This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A163981 #25 Jul 02 2021 16:40:18 %S A163981 7,2,2,37,2,89,2,73,151,2,43,127,2,239,59,419,2,73,359,2,401,419,1163, %T A163981 881,307,2,967,2,569,3697,397,691,2,457,2,163,821,839,179,1259,2,2111, %U A163981 2,1777,2,223,3803,3863,2,3499,1201,2,2269,263,269,1889,2,283,1409,2,2647 %N A163981 a(n) is the smallest prime of the form prime(n+1)*k - prime(n), k >= 1, where prime(n) is the n-th prime. %C A163981 a(n) = 2 if and only if n is in A029707. - _Robert Israel_, Jan 16 2019 %H A163981 Robert Israel, <a href="/A163981/b163981.txt">Table of n, a(n) for n = 1..10000</a> %p A163981 a := proc (n) local k: for k while isprime(ithprime(n+1)*k-ithprime(n)) = false do end do: ithprime(n+1)*k-ithprime(n) end proc: seq(a(n), n = 1 .. 65); # _Emeric Deutsch_, Aug 10 2009 %t A163981 a[n_] := Module[{p, q, r}, For[p = Prime[n]; q = Prime[n + 1]; k = 1, True, k++, If[PrimeQ[r = q k - p], Return[r]]]]; %t A163981 Array[a, 100] (* _Jean-François Alcover_, Aug 28 2020 *) %o A163981 (Python) %o A163981 from sympy import isprime, nextprime, prime %o A163981 def a(n): %o A163981 pn = prime(n); pn1 = nextprime(pn); k = 1 %o A163981 while not isprime(pn1*k - pn): k += 1 %o A163981 return pn1*k - pn %o A163981 print([a(n) for n in range(1, 62)]) # _Michael S. Branicky_, Jul 02 2021 %o A163981 (PARI) a(n) = my(k=1); while (!isprime(p=prime(n+1)*k - prime(n)), k++); p; \\ _Michel Marcus_, Jul 02 2021 %Y A163981 Cf. A029707, A129919. %Y A163981 Contains A085704. %K A163981 nonn %O A163981 1,1 %A A163981 _Leroy Quet_, Aug 07 2009 %E A163981 Extended by _Emeric Deutsch_, Aug 10 2009