cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A163985 Sum of all isolated parts of all partitions of n.

This page as a plain text file.
%I A163985 #22 Apr 21 2025 08:38:29
%S A163985 0,1,2,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,
%T A163985 49,51,53,55,57,59,61,63,65,67,69,71,73,75,77,79,81,83,85,87,89,91,93,
%U A163985 95,97,99,101,103,105,107,109,111,113
%N A163985 Sum of all isolated parts of all partitions of n.
%C A163985 Note that for n >= 3 the isolated parts of all partitions of n are n and n-1.
%H A163985 G. C. Greubel, <a href="/A163985/b163985.txt">Table of n, a(n) for n = 0..5000</a>
%H A163985 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa2dt.jpg">Illustration of the shell model of partitions (2D view)</a>.
%H A163985 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpa3dt.jpg">Illustration of the shell model of partitions (3D view)</a>.
%H A163985 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1).
%F A163985 a(n) = n for n<3, a(n) = 2*n-1 for n>=3.
%F A163985 a(n) = A140139(n), n>=1.
%F A163985 a(n) = A130773(n-1), n >=2. - _R. J. Mathar_, Jan 25 2023
%F A163985 From _Stefano Spezia_, Apr 21 2025: (Start)
%F A163985 G.f.: x*(1 + 2*x^2 - x^3)/(1 - x)^2.
%F A163985 E.g.f.: 1 - x^2/2 - exp(x)*(1 - 2*x). (End)
%e A163985 For n=4, the five partitions of 4 are {(4);(2,2);(3,1);(2,1,1);(1,1,1,1)}. Since 1 and 2 are repeated parts and 3 and 4 are not repeated parts (or isolated parts) then a(4) = 3 + 4 = 7.
%t A163985 Join[{0, 1, 2}, Table[2 n - 1, {n, 3, 60}]] (* _Vincenzo Librandi_, Dec 23 2015 *)
%o A163985 (Magma) [0,1,2] cat [2*n-1: n in [3..60]]; // _Vincenzo Librandi_, Dec 23 2015
%o A163985 (PARI) a(n) = if (n<3, n, 2*n-1); \\ _Michel Marcus_, Dec 23 2015
%Y A163985 Cf. A000041, A005408, A140139, A163986.
%K A163985 easy,nonn,less
%O A163985 0,3
%A A163985 _Omar E. Pol_, Aug 14 2009