cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164022 a(n) = the smallest prime that, when written in binary, starts with the substring of n in binary.

Original entry on oeis.org

2, 2, 3, 17, 5, 13, 7, 17, 19, 41, 11, 97, 13, 29, 31, 67, 17, 37, 19, 41, 43, 89, 23, 97, 101, 53, 109, 113, 29, 61, 31, 131, 67, 137, 71, 73, 37, 307, 79, 163, 41, 337, 43, 89, 181, 373, 47, 97, 197, 101, 103, 211, 53, 109, 223, 113, 229, 233, 59, 241, 61, 251, 127, 257
Offset: 1

Views

Author

Leroy Quet, Aug 08 2009

Keywords

Comments

The argument used to prove that A018800(n) always exists applies here also. - N. J. A. Sloane, Nov 14 2014

Examples

			4 in binary is 100. Looking at the binary numbers that begin with 100: 100 = 4 in decimal is composite; 1000 = 8 in decimal is composite; 1001 = 9 in decimal is composite; 10000 = 16 in decimal is composite. But 10001 = 17 in decimal is prime. So a(4) = 17.
		

Crossrefs

A018800 is the base-10 analog.
Row n=1 of A262365. Cf. A108234 (number of new bits), A208241 (proper substring).

Programs

  • Maple
    A164022 := proc(n) dgs2 := convert(n,base,2) ; ldgs := nops(dgs2) ; for i from 1 do p := ithprime(i) ; if p >= n then pdgs := convert(p,base,2) ; if [op(nops(pdgs)+1-ldgs.. nops(pdgs),pdgs)] = dgs2 then RETURN( p) ; fi; fi; od: end: seq(A164022(n),n=1..120) ; # R. J. Mathar, Sep 13 2009
  • Mathematica
    With[{s = Map[IntegerDigits[#, 2] &, Prime@ Range[10^4]]}, Table[Block[{d = IntegerDigits[n, 2]}, FromDigits[#, 2] &@ SelectFirst[s, Take[#, UpTo@ Length@ d] == d &]], {n, 64}]] (* Michael De Vlieger, Sep 23 2017 *)

Extensions

Corrected terms a(1) and a(2) (with help from Ray Chandler) Leroy Quet, Aug 16 2009
Extended by R. J. Mathar, Sep 13 2009