cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164035 a(n) = ((4+3*sqrt(2))*(5+sqrt(2))^n + (4-3*sqrt(2))*(5-sqrt(2))^n)/4.

This page as a plain text file.
%I A164035 #8 Sep 08 2022 08:45:47
%S A164035 2,13,84,541,3478,22337,143376,920009,5902442,37864213,242885964,
%T A164035 1557982741,9993450238,64100899337,411159637896,2637275694209,
%U A164035 16916085270482,108503511738013,695965156159044,4464070791616141
%N A164035 a(n) = ((4+3*sqrt(2))*(5+sqrt(2))^n + (4-3*sqrt(2))*(5-sqrt(2))^n)/4.
%C A164035 Binomial transform of A164034. Fifth binomial transform of A164090.
%H A164035 G. C. Greubel, <a href="/A164035/b164035.txt">Table of n, a(n) for n = 0..1000</a>
%H A164035 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-23).
%F A164035 a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 2, a(1) = 13.
%F A164035 G.f.: (2-7*x)/(1-10*x+23*x^2).
%F A164035 E.g.f.: (2*cosh(sqrt(2)*x) + (3*sqrt(2)/2)*sinh(sqrt(2)*x))*exp(5*x). - _G. C. Greubel_, Sep 08 2017
%t A164035 LinearRecurrence[{10,-23}, {2,13}, 50] (* or *) CoefficientList[Series[(2 - 7*x)/(1 - 10*x + 23*x^2), {x,0,50}], x] (* _G. C. Greubel, Sep 08 2017 *)
%o A164035 (Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((4+3*r)*(5+r)^n+(4-3*r)*(5-r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 09 2009
%o A164035 (PARI) x='x+O('x^50); Vec((2-7*x)/(1-10*x+23*x^2)) \\ _G. C. Greubel_, Sep 08 2017
%Y A164035 Cf. A164034, A164090.
%K A164035 nonn
%O A164035 0,1
%A A164035 Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
%E A164035 Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 09 2009