cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164071 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.

This page as a plain text file.
%I A164071 #12 Jan 08 2023 15:02:14
%S A164071 1,38,1406,52022,1924814,71218118,2635069663,97497551520,
%T A164071 3607408444536,133474076864784,4938539527424232,182725913801503872,
%U A164071 6760857008268006426,250151642617591466280,9255608309383525500408
%N A164071 Number of reduced words of length n in Coxeter group on 38 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
%C A164071 The initial terms coincide with those of A170757, although the two sequences are eventually different.
%C A164071 Computed with MAGMA using commands similar to those used to compute A154638.
%H A164071 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (36, 36, 36, 36, 36, -666).
%F A164071 G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1).
%t A164071 CoefficientList[Series[(t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1), {t,0,50}], t] (* _G. C. Greubel_, Sep 09 2017 *)
%t A164071 coxG[{6,666,-36}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Jan 08 2023 *)
%o A164071 (PARI) t='t+O('t^50); Vec((t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(666*t^6 - 36*t^5 - 36*t^4 - 36*t^3 - 36*t^2 - 36*t + 1)) \\ _G. C. Greubel_, Sep 09 2017
%K A164071 nonn
%O A164071 0,2
%A A164071 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009