This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164090 #32 Jan 25 2023 07:03:26 %S A164090 2,3,4,6,8,12,16,24,32,48,64,96,128,192,256,384,512,768,1024,1536, %T A164090 2048,3072,4096,6144,8192,12288,16384,24576,32768,49152,65536,98304, %U A164090 131072,196608,262144,393216,524288,786432,1048576,1572864,2097152,3145728 %N A164090 a(n) = 2*a(n-2) for n > 2; a(1) = 2, a(2) = 3. %C A164090 Interleaving of A000079 without initial 1 and A007283. %C A164090 Agrees from a(2) onward with A145751 for all terms listed there (up to 65536). Apparently equal to 2, 3 followed by A090989. Equals 2 followed by A163978. %C A164090 Binomial transform is A000129 without first two terms, second binomial transform is A020727, third binomial transform is A164033, fourth binomial transform is A164034, fifth binomial transform is A164035. %C A164090 Number of achiral necklaces or bracelets with n beads using up to 2 colors. For n=5, the eight achiral necklaces or bracelets are AAAAA, AAAAB, AAABB, AABAB, AABBB, ABABB, ABBBB, and BBBBB. - _Robert A. Russell_, Sep 22 2018 %H A164090 Vincenzo Librandi, <a href="/A164090/b164090.txt">Table of n, a(n) for n = 1..2000</a> %H A164090 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,2). %F A164090 a(n) = A029744(n+1). %F A164090 a(n) = A052955(n-1) + 1. %F A164090 a(n) = A027383(n-2) + 2 for n > 1. %F A164090 a(n) = A060482(n-1) + 3 for n > 3. %F A164090 a(n) = A070875(n) - A070875(n-1). %F A164090 a(n) = (7 - (-1)^n)*2^((1/4)*(2*n - 1 + (-1)^n))/4. %F A164090 G.f.: x*(2+3*x)/(1-2*x^2). %F A164090 a(n) = A063759(n-1), n>1. - _R. J. Mathar_, Aug 17 2009 %F A164090 Sum_{n>=1} 1/a(n) = 5/3. - _Amiram Eldar_, Mar 28 2022 %t A164090 a[n_] := If[EvenQ[n], 3*2^(n/2 - 1), 2^((n + 1)/2)]; Array[a, 42] (* _Jean-François Alcover_, Oct 12 2017 *) %t A164090 RecurrenceTable[{a[1]==2,a[2]==3,a[n]==2a[n-2]},a,{n,50}] (* or *) LinearRecurrence[{0,2},{2,3},50] (* _Harvey P. Dale_, Mar 01 2018 *) %o A164090 (Magma) [ n le 2 select n+1 else 2*Self(n-2): n in [1..42] ]; %o A164090 (PARI) a(n) = if(n%2,2,3) * 2^((n-1)\2); \\ _Andrew Howroyd_, Oct 07 2017 %Y A164090 Cf. A000079 (powers of 2), A007283 (3*2^n), A029744, A145751, A090989, A163978, A000129, A020727, A164033, A164034, A164035, A052955, A027383, A060482, A070875. %Y A164090 Second column of A284855. %K A164090 nonn,easy %O A164090 1,1 %A A164090 _Klaus Brockhaus_, Aug 09 2009