This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164117 #15 Sep 08 2022 08:45:47 %S A164117 1,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1, %T A164117 -1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1, %U A164117 1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2,-1,1,-1,2 %N A164117 Expansion of (1 - x) * (1 - x^10) / ((1 - x^2) * (1 - x^4) * (1 - x^5)) in powers of x. %C A164117 Convolution inverse of A164118. %H A164117 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 1). %F A164117 Euler transform of length 10 sequence [-1, 1, 0, 1, 1, 0, 0, 0, 0, -1]. %F A164117 a(n) = -b(n) where b(n) is multiplicative with b(2) = -1, b(2^e) = -2 if e>1, b(p^e) = 1 if p>2. %F A164117 a(n) = a(-n) for all n in Z. a(n+4) = a(n) unless n=0 or n=-4. %F A164117 G.f.: (1 - x + x^2 - x^3 + x^4) / (1 - x^4). %F A164117 a(n) = (-1)^n * A164415(n). %e A164117 G.f. = 1 - x + x^2 - x^3 + 2*x^4 - x^5 + x^6 - x^7 + 2*x^8 - x^9 + x^10 + ... %t A164117 CoefficientList[Series[(1-x)(1-x^10)/((1-x^2)(1-x^4)(1-x^5)),{x,0,120}], x] (* _Harvey P. Dale_, Nov 28 2014 *) %o A164117 (PARI) {a(n) = (-1)^n - (n==0) + (n%4==0)}; %o A164117 (PARI) {a(n) = -(n==0) + [2, -1, 1, -1][n%4 + 1]}; %o A164117 (Magma) m:=100; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-x)*(1-x^10)/((1-x^2)*(1-x^4)*(1-x^5)))); // _G. C. Greubel_, Sep 25 2018 %Y A164117 Cf. A164415, A164118. %K A164117 sign,easy %O A164117 0,5 %A A164117 _Michael Somos_, Aug 10 2009