A161460 Positive integers k such that there is no m different from k where both d(k) = d(m) and d(k+1) = d(m+1), where d(k) is the number of positive divisors of k.
1, 2, 3, 4, 8, 15, 16, 24, 35, 48, 63, 64, 80, 99, 288, 528, 575, 624, 728, 960, 1023, 1024, 1088, 1295, 2303, 2400, 4095, 4096, 5328, 6399, 6723, 9408, 9999, 14640, 15624, 28223, 36863, 38415, 46655, 50175, 50624, 57121, 59048, 59049, 65535, 65536, 83520
Offset: 1
Keywords
Examples
d(15) = 4, and d(15+1) = 5. Any positive integer m+1 with exactly 5 divisors must be of the form p^4, where p is prime. So m = p^4 - 1 = (p^2+1)*(p+1)*(p-1). Now, in order for d(m) to have exactly 4 divisors, m must either be of the form q^3 or q*r, where q and r are distinct primes. But no p is such that (p^2+1)*(p+1)*(p-1) = q^3. And the only p where (p^2+1)*(p+1)*(p-1) = q*r is p=2 (and so q=5, r=3). So there is only one m where both d(m) = 4 and d(m+1) = 5, which is m=15. Therefore 15 is in this sequence.
Links
- R. J. Mathar, Recurring pairs of consecutive entries in the number-of-divisors function, vixra:1911.0287 (2019).
Extensions
Extended with J. Brennen's values of Jun 11 2009 by R. J. Mathar, Jun 16 2009
a(47) from Jon E. Schoenfield, Feb 08 2021
Comments