A164137 Number of binary strings of length n with equal numbers of 000 and 001 substrings.
1, 2, 4, 6, 11, 19, 35, 61, 111, 200, 369, 676, 1256, 2337, 4392, 8273, 15686, 29837, 57038, 109362, 210448, 406029, 785573, 1523217, 2959853, 5761671, 11234619, 21937768, 42894822, 83969696, 164552423, 322773812, 633679446, 1245032098, 2447951456, 4816241573
Offset: 0
Keywords
Examples
From _Robert P. P. McKone_, Apr 03 2024: (Start) a(3) = 6: 010, 011, 100, 101, 110, 111. a(4) = 11: 0001, 0100, 0101, 0110, 0111, 1010, 1011, 1100, 1101, 1110, 1111. a(5) = 19: 00010, 00011, 01010, 01011, 01100, 01101, 01110, 01111, 10001, 10100, 10101, 10110, 10111, 11010, 11011, 11100, 11101, 11110, 11111. (End)
Links
- R. H. Hardin, Table of n, a(n) for n=0..500
- Shalosh B. Ekhad and Doron Zeilberger, Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type, arXiv preprint arXiv:1112.6207 [math.CO], 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From _N. J. A. Sloane_, Apr 07 2012]
Crossrefs
Programs
-
Mathematica
tup[n_] := Tuples[{0, 1}, n]; cou[lst_List] := Count[lst, {0, 0, 0}] == Count[lst, {0, 0, 1}]; par[lst_List] := Partition[lst, 3, 1]; a[n_] := a[n] = Map[cou, Map[par, tup[n]]] // Boole // Total; Monitor[Table[a[n], {n, 0, 18}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, Apr 03 2024 *)
Formula
From Robert P. P. McKone, Apr 03 2024: (Start)
Conjecture: a(n) = ((8*n-72)*a(n-10) + (20*n-160)*a(n-9) + (6*n-26)*a(n-8) + (46-5*n)*a(n-7) - 16*a(n-6) + (56-11*n)*a(n-5) + (12-n)*a(n-4) + (n-18)*a(n-3) + n*a(n-2) + 2*n*a(n-1))/n for n>=10.
(End)