This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164291 #6 Sep 24 2013 00:41:43 %S A164291 3,11,59,71,239,191,2111,1151,14591,26111,15359,139967,138239,675839, %T A164291 2101247,737279,4866047,786431,22118399,36175871,194641919,63700991, %U A164291 138412031,169869311,1321205759,11123294207,16357785599,4076863487,25165823999,10871635967 %N A164291 a(n) = p is the first twin prime (p, p+2) for which p+1 has n prime factors (n>=2, multiplicity counted). %C A164291 a(3)-a(6) are the first elements of A060213, A102168, A164289, A164290 respectively with n=3,4,5,6 (prime factors in the middle number). %C A164291 This gives the first p with (p,p+2) twin primes and Omega(p+1)=n with n>=2 (n=1 is impossible). %H A164291 Donovan Johnson, <a href="/A164291/b164291.txt">Table of n, a(n) for n = 2..200</a> %e A164291 a(7)=191 because in (191, 192, 193) we have Omega(192)=Omega(2*2*2*2*2*2*3)=7 and 191, 193 are twin primes. %e A164291 The sequence oscillates and here we see that a(7)<a(6)=239. %t A164291 Omega = If[ # == 1, 0, Apply[Plus, Transpose[FactorInteger[ # ]][[2]]]] &; Wmil = Map[Omega, Range[1, 10000000]]; Aseq=(Flatten@Position[Partition[Wmil, 3, 1], {1, #, 1}])[[1]] & /@ Range[3,19] %Y A164291 Cf. A060213, A102168, A164289, A164290. %K A164291 nonn %O A164291 2,1 %A A164291 _Carlos Alves_, Aug 12 2009 %E A164291 Definition and comments corrected, a(2) and a(20)-a(29) from _Donovan Johnson_, Aug 20 2009