This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164295 #9 Sep 13 2017 12:22:26 %S A164295 2,2,1,2,1,1,2,1,1,1,2,1,1,1,1,2,1,1,0,1,1,2,1,1,1,1,1,1,2,1,1,1,1,0, %T A164295 1,1,2,1,1,1,1,0,1,1,1,2,1,1,0,1,0,1,0,1,1,2,1,1,1,1,1,1,1,1,1,1,2,1, %U A164295 1,1,1,1,1,0,0,0,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,0,1,0,1,0,1,0,1,0,1,1 %N A164295 Triangle T(n,k) read by rows: sum of the triangles A054521 and A051731. %C A164295 Zeros in the table, for example T(6,4)=0, indicate that the row and column indices n and k are not coprime and in addition that there is a nonzero remainder n (mod k). %H A164295 G. C. Greubel, <a href="/A164295/b164295.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A164295 T(n,k) = A054521(n,k) + A051731(n,k), 1<=k<=n, 1<=n. %e A164295 The table starts %e A164295 2 %e A164295 2, 1 %e A164295 2, 1, 1 %e A164295 2, 1, 1, 1 %e A164295 2, 1, 1, 1, 1 %e A164295 2, 1, 1, 0, 1, 1 %e A164295 2, 1, 1, 1, 1, 1, 1 %e A164295 2, 1, 1, 1, 1, 0, 1, 1 %e A164295 2, 1, 1, 1, 1, 0, 1, 1, 1 %e A164295 2, 1, 1, 0, 1, 0, 1, 0, 1, 1 %p A164295 A054521 := proc(n,k) if gcd(n,k) = 1 then 1; else 0 ; fi; end: %p A164295 A051731 := proc(n,k) if (n mod k) = 0 then 1; else 0 ; fi; end: %p A164295 A164295 := proc(n,k) A054521(n,k)+A051731(n,k) ; end: seq(seq(A164295(n,k),k=1..n),n=1..10) ; %t A164295 T[n_, k_] = If[Mod[n, k] == 0, 1, 0] + If[GCD[n, k] == 1, 1, 0]; %t A164295 Table[Table[T[n, k], {k, 1, n}], {n, 1, 10}]; Flatten[%] %Y A164295 Cf. A054521, A051731. %K A164295 nonn,tabl %O A164295 1,1 %A A164295 _Roger L. Bagula_ and _Mats Granvik_, Aug 12 2009 %E A164295 Edited by the Associate Editors of the OEIS, Aug 28 2009