A164309 Triangle read by rows, generated from the binomial expansion of (5x + 2).
1, 5, 2, 25, 10, 4, 10, 125, 50, 20, 50, 20, 8, 20, 50, 625, 250, 100, 250, 100, 40, 100, 250, 100, 40, 16, 40, 100, 40, 100, 250
Offset: 0
Examples
First we construct a 5^n * 2^n array: . 1...2...4...8...16... 5..10..20..40........ 25.50................ 125.................. . Extract diagonal terms: (1; 5,2; 25,10,4;...) then use the multiplication rules given in the formulas section. . First few rows of triangle A164057: 1; 1, 0; 1, 0, 0, 1; 1, 0, 0, 1, 0, 0, 1, 1; 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1; ... Using the rules, we obtain: . 1; 5, 2; 25, 10, 4, 10; 125, 50, 20, 50, 20, 8, 20, 50; 625, 250, 100, 250, 100, 40, 100, 250, 100, 40, 16, 40, 100, 40, 100, 250; ... Example: place row 3 of A164056 on top of construction of row 3, A164309: . (1,...0,...0,...1,...0,...0,...1,...1): (125,50,..20,..50,..20,...8,..20,..50) . "50) = (2/5)*125, while 50 = (5/2)*20; etc.
Formula
Given terms in a 2^n * 5^n multiplication table (diagonals of the array); map the terms in a triangle with 2^n terms per row using the template of A164057: (1;, 1,0; 1,0,0,1; 1,0,0,1,0,0,1,1;...).
Starting with a power of 5 at left, next term to the right = (5/2)*(current term) if the A164057 term = "1".
Comments