This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164310 #9 Sep 08 2022 08:45:47 %S A164310 4,15,66,306,1440,6804,32184,152280,720576,3409776,16135200,76352544, %T A164310 361304064,1709709120,8090430336,38284327296,181163381760, %U A164310 857274326784,4056665670144,19196348060160,90838094340096,429850477679616 %N A164310 a(n) = 6*a(n-1) - 6*a(n-2) for n > 1; a(0) = 4, a(1) = 15. %C A164310 Binomial transform of A077236. Inverse binomial transform of A083882 without initial 1. %H A164310 G. C. Greubel, <a href="/A164310/b164310.txt">Table of n, a(n) for n = 0..1000</a> %H A164310 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-6). %F A164310 a(n) = ((4+sqrt(3))*(3+sqrt(3))^n + (4-sqrt(3))*(3-sqrt(3))^n)/2. %F A164310 G.f.: (4-9*x)/(1-6*x+6*x^2). %F A164310 E.g.f.: (4*cosh(sqrt(3)*x) + sqrt(3)*sinh(sqrt(3)*x))*exp(3*x). - _G. C. Greubel_, Sep 13 2017 %t A164310 LinearRecurrence[{6,-6}, {4,15}, 50] (* or *) CoefficientList[Series[(4 - 9*x)/(1 - 6*x + 6*x^2), {x,0,50}], x] (* _G. C. Greubel_, Sep 13 2017 *) %o A164310 (Magma) [ n le 2 select 11*n-7 else 6*Self(n-1)-6*Self(n-2): n in [1..22] ]; %o A164310 (PARI) x='x+O('x^50); Vec((4-9*x)/(1-6*x+6*x^2)) \\ _G. C. Greubel_, Sep 13 2017 %Y A164310 Cf. A077236, A083882. %K A164310 nonn,easy %O A164310 0,1 %A A164310 _Klaus Brockhaus_, Aug 12 2009