This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164351 #18 Sep 08 2022 08:45:47 %S A164351 1,50,2450,120050,5882450,288240050,14123761225,692064240000, %T A164351 33911144820000,1661645952120000,81420644594940000, %U A164351 3989611239264000000,195490933775422559400,9579054924518618851200,469373650608038610268800 %N A164351 Number of reduced words of length n in Coxeter group on 50 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I. %C A164351 The initial terms coincide with those of A170769, although the two sequences are eventually different. %C A164351 Computed with MAGMA using commands similar to those used to compute A154638. %H A164351 G. C. Greubel, <a href="/A164351/b164351.txt">Table of n, a(n) for n = 0..590</a> %H A164351 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (48, 48, 48, 48, 48, -1176). %F A164351 G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1176*t^6 - 48*t^5 - 48*t^4 - 48*t^3 - 48*t^2 - 48*t + 1). %F A164351 a(n) = -1176*a(n-6) + 48*Sum_{k=1..5} a(n-k). - _Wesley Ivan Hurt_, May 11 2021 %p A164351 seq(coeff(series((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), t, n+1), t, n), n = 0 .. 20); # _G. C. Greubel_, Aug 24 2019 %t A164351 coxG[{6,1176,-48}] (* The coxG program is at A169452 *) (* _Harvey P. Dale_, Feb 18 2015 *) %t A164351 CoefficientList[Series[(1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7), {t, 0, 20}], t] (* _G. C. Greubel_, Sep 15 2017 *) %o A164351 (PARI) my(t='t+O('t^20)); Vec((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)) \\ _G. C. Greubel_, Sep 15 2017 %o A164351 (Magma) R<t>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7) )); // _G. C. Greubel_, Aug 24 2019 %o A164351 (Sage) %o A164351 def A164351_list(prec): %o A164351 P.<t> = PowerSeriesRing(ZZ, prec) %o A164351 return P((1+t)*(1-t^6)/(1-49*t+1224*t^6-1176*t^7)).list() %o A164351 A164351_list(20) # _G. C. Greubel_, Aug 24 2019 %o A164351 (GAP) a:=[50, 2450, 120050, 5882450, 288240050, 14123761225];; for n in [7..20] do a[n]:=48*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -1176*a[n-6]; od; Concatenation([1], a); # _G. C. Greubel_, Aug 24 2019 %K A164351 nonn %O A164351 0,2 %A A164351 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009