cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164387 Number of binary strings of length n with no substrings equal to 0000 or 0010.

Original entry on oeis.org

1, 2, 4, 8, 14, 25, 45, 82, 149, 270, 489, 886, 1606, 2911, 5276, 9562, 17330, 31409, 56926, 103173, 186991, 338903, 614229, 1113231, 2017624, 3656749, 6627505, 12011714, 21770074, 39456161, 71510489, 129605869, 234898146, 425730250, 771595046, 1398441654
Offset: 0

Views

Author

R. H. Hardin, Aug 14 2009

Keywords

Comments

Also, number of subsets of {1,...,n} not containing {a,a+1,a+3} for any a. Also, the number of subsets of {1,...,n} not containing {a,a+2,a+3} for any a. - David Nacin, Mar 07 2012

Examples

			When n=5, the bitstrings containing 0000 or 0010 are 00000, 10000, 00001, 10010, 00010, 00100, 00101.  Thus a(5) = 2^5 - 7. - _David Nacin_, Mar 07 2012
		

Crossrefs

Cf. A209400.

Programs

  • Maple
    f:=proc(n) option remember;
    if n <= 3 then 2^n elif n=4 then 14
    else f(n-1)+f(n-2)+f(n-4)+f(n-5); fi; end;
  • Mathematica
    LinearRecurrence[{1, 1, 0, 1, 1}, {1, 2, 4, 8, 14}, 40] (* David Nacin, Mar 07 2012 *)
  • PARI
    v=[1,2,4,8,14];while(#v<=1000,v=concat(v,v[#v]+v[#v-1]+v[#v-3]+v[#v-4]));v \\ Charles R Greathouse IV, Aug 01 2011
    
  • Python
    def a(n, adict={0:1, 1:2, 2:4, 3:8, 4:14}):
        if n in adict:
            return adict[n]
        adict[n]=a(n-1)+a(n-2)+a(n-4)+a(n-5)
        return adict[n] # David Nacin, Mar 07 2012

Formula

From N. J. A. Sloane, Mar 31 2011: (Start)
For n >= 5, a(n) = a(n-1) + a(n-2) + a(n-4) + a(n-5).
G.f.: (1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^4 - x^5). (End)

Extensions

Edited by N. J. A. Sloane, Mar 31 2011