A164387 Number of binary strings of length n with no substrings equal to 0000 or 0010.
1, 2, 4, 8, 14, 25, 45, 82, 149, 270, 489, 886, 1606, 2911, 5276, 9562, 17330, 31409, 56926, 103173, 186991, 338903, 614229, 1113231, 2017624, 3656749, 6627505, 12011714, 21770074, 39456161, 71510489, 129605869, 234898146, 425730250, 771595046, 1398441654
Offset: 0
Examples
When n=5, the bitstrings containing 0000 or 0010 are 00000, 10000, 00001, 10010, 00010, 00100, 00101. Thus a(5) = 2^5 - 7. - _David Nacin_, Mar 07 2012
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..1000 [Replaces R. H. Hardin's b-file of 500 terms]
- Index entries for linear recurrences with constant coefficients, signature (1,1,0,1,1).
Crossrefs
Cf. A209400.
Programs
-
Maple
f:=proc(n) option remember; if n <= 3 then 2^n elif n=4 then 14 else f(n-1)+f(n-2)+f(n-4)+f(n-5); fi; end;
-
Mathematica
LinearRecurrence[{1, 1, 0, 1, 1}, {1, 2, 4, 8, 14}, 40] (* David Nacin, Mar 07 2012 *)
-
PARI
v=[1,2,4,8,14];while(#v<=1000,v=concat(v,v[#v]+v[#v-1]+v[#v-3]+v[#v-4]));v \\ Charles R Greathouse IV, Aug 01 2011
-
Python
def a(n, adict={0:1, 1:2, 2:4, 3:8, 4:14}): if n in adict: return adict[n] adict[n]=a(n-1)+a(n-2)+a(n-4)+a(n-5) return adict[n] # David Nacin, Mar 07 2012
Formula
From N. J. A. Sloane, Mar 31 2011: (Start)
For n >= 5, a(n) = a(n-1) + a(n-2) + a(n-4) + a(n-5).
G.f.: (1 + x + x^2 + 2*x^3 + x^4)/(1 - x - x^2 - x^4 - x^5). (End)
Extensions
Edited by N. J. A. Sloane, Mar 31 2011
Comments