cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164399 Number of binary strings of length n with no substrings equal to 0001 or 1010.

This page as a plain text file.
%I A164399 #15 Jun 02 2025 01:50:05
%S A164399 14,24,41,70,119,202,343,582,987,1674,2839,4814,8163,13842,23471,
%T A164399 39798,67483,114426,194023,328990,557843,945890,1603871,2719558,
%U A164399 4611339,7819082,13258199,22480878,38119043,64635442,109597199,185835286
%N A164399 Number of binary strings of length n with no substrings equal to 0001 or 1010.
%H A164399 R. H. Hardin, <a href="/A164399/b164399.txt">Table of n, a(n) for n=4..500</a>
%H A164399 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (2,-1,2,-2).
%F A164399 G.f.: x^4*(-14+4*x-7*x^2+16*x^3)/((1-x)*(2*x^3+x-1)). - _R. J. Mathar_, Nov 30 2011
%t A164399 LinearRecurrence[{2,-1,2,-2}, {14, 24, 41, 70}, 50] (* _G. C. Greubel_, Sep 18 2017 *)
%o A164399 (PARI) x='x+O('x^50); Vec(x^4*(-14+4*x-7*x^2+16*x^3)/((1-x)*(2*x^3+x-1))) \\ _G. C. Greubel_, Sep 18 2017
%K A164399 nonn
%O A164399 4,1
%A A164399 _R. H. Hardin_, Aug 14 2009