This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164516 #9 Jun 02 2025 01:51:12 %S A164516 -1,2,2,-1,1,-2,-2,4,1,4,-2,-2,-2,-2,4,1,4,-2,-2,1,-1,2,2,-4,-1,-4,2, %T A164516 2,2,2,-4,-4,-1,-4,-4,8,8,2,2,8,8,-4,-4,-4,-1,-4,-4,-4,2,2,2,2,2,2,2, %U A164516 2,-4,-4,-4,-1,-4,-4,-4,-4,8,8,2,2,8,8,-4,-4,-1,-4,-4,2,2,2,2,-4,-1,-4,2,2 %N A164516 Infinite set of Petoukhov 2^n x 2^n Petoukhov matrices by antidiagonals, generated from w = (-.5 + sqrt(-3)/2). %C A164516 Sergei Petoukhov has pioneered the investigation of certain matrices whose square roots are irrational numbers; and in recognition his discoveries such matrices and their accompanying sequences may be termed "Petoukhov matrices/sequences". %C A164516 Refer to A119633 for a related sequence. %D A164516 Sergey Petoukhov & Matthew He, "symmetrical Analysis Techniques for Genetics systems and Bioinformatics, Advanced Patterns & Applications", IGI Global, 978-1-60566-127-9, October, 2009, Chapters 2, 4, and 6. %F A164516 Given w = (-.5 + sqrt(-3)/2), use the exponent codes of A164092 to create alternating circulant matrices such that a row with 2^n terms generates 2^n x 2^n matrices. Terms in these matrices = exponents for w, then square the matrices. Sequence A164516 = antidiagonals of the infinite set of 2^n x 2^n matrices, exhausting terms in the n-th matrix before using the terms of the next matrix. %e A164516 The exponent codes of A164092 are: %e A164516 . %e A164516 0; (skip as trivial); %e A164516 1, -1; (creates the 2x2 matrix [w,1/w; 1/w,w](exponents of w = 1 & -1). %e A164516 2, 0, -2, 0; %e A164516 3, 1, -1, 1, -1, -3, -1, 1; %e A164516 4, 3, .0, 2, .0, -2, .0, 2, 0, -2, -4, -2, 0, -2, 0, 2; %e A164516 ... %e A164516 Exponent codes (above) are generated by adding "1" to each term in n-th row bringing down that subset as the first half of the next row. Second half of the next (n+1)-th) row is created by reversing the terms of n-th row and subtracting "1" from each term. (2, 0, -2, 0) becomes (3, 1, -1, 1) as the first half of the next row. Then append (-1, -3, -1, 1), getting (3, 1, -1, 1, -1, -3, -1, 1) as row 3. Let these rows = "A" for each matrix %e A164516 . %e A164516 In a 2^n * 2^n matrix with a conventional upper left term of (1,1), place A as the top row and left column. Put leftmost term of A into every (n,n) (i.e. diagonal position). Then, odd columns are circulated from position (n,n) downwards while even columns circulate upwards starting from (n,n). Using A with 8 terms we obtain the following 8x8 matrix: %e A164516 . %e A164516 3, 1, -1, 1, -1, -3, -1, 1; %e A164516 1, 3, 1, -1, -3, -1, 1, -1; %e A164516 -1, 1, 3, 1, -1, 1, -1, -3; %e A164516 1, -1, 1, 3, 1, -1, -3, -1; %e A164516 -1, -3, -1, 1, 3, 1, -1, 1; %e A164516 -3, -1, 1, -1, 1, 3, 1, -1; %e A164516 -1, 1, -1, -3, -1, 1, 3, 1; %e A164516 1, -1, -3, -1, 1, -1, 1, 3; %e A164516 . %e A164516 The foregoing terms are exponents to w, so our new matrix becomes: %e A164516 . %e A164516 1, w, 1/w, w, 1/w, 1, 1/w, w; %e A164516 w, 1, w, 1/w, 1, 1/w, w, 1/w; %e A164516 1/w, w, 1, w, 1/w, w, 1/w, 1; %e A164516 w, 1/w, w, 1, w, 1/w, 1, 1/w; %e A164516 1/w, 1, 1/w, w, 1, w, 1/w, w; %e A164516 1, 1/w, w, 1/w, w, 1, w, 1/w; %e A164516 1/w, w, 1/w, 1, 1/w, w, 1, w; %e A164516 w, 1/w, 1, 1/w, w, 1/w, w, 1; %e A164516 . %e A164516 Let the foregoing matrix = Q, then take Q^2 = %e A164516 . %e A164516 -1, 2, -4, 2, -4, 8, -4, 2; %e A164516 2, -1, 2, -4, 8, -4, 2, -4; %e A164516 -4, 2, -1, 2, -4, 2, -4, 8; %e A164516 2, -4, 2, -1, 2, -4, 8, -4; %e A164516 -4, 8, -4, 2, -1, 2, -4, 2; %e A164516 8, -4, 2, -4, 2, -1, 2, -4; %e A164516 -4, 2, -4, 8, -4, 2, -1, 2; %e A164516 2, -4, 8, -4, 2, -4, 2, -1; %e A164516 . %e A164516 Following analogous procedures for the 2x2 and 4x4 matrices, those are [ -1, 2; 2,-1], and %e A164516 . %e A164516 1, -2, 4, -2; %e A164516 -2, 1, -2, 4; %e A164516 4, -2, 1, -2; %e A164516 -2, 4, -2, 1; %e A164516 . %e A164516 Take antidiagonals of the matrices until all terms in each matrix are used. %Y A164516 Cf. A164092, A119633. %K A164516 tabl,sign %O A164516 1,2 %A A164516 _Gary W. Adamson_, Aug 14 2009