This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164532 #14 Sep 08 2022 08:45:47 %S A164532 1,4,6,24,36,144,216,864,1296,5184,7776,31104,46656,186624,279936, %T A164532 1119744,1679616,6718464,10077696,40310784,60466176,241864704, %U A164532 362797056,1451188224,2176782336,8707129344,13060694016,52242776064,78364164096 %N A164532 a(n) = 6*a(n-2) for n > 2; a(1) = 1, a(2) = 4. %C A164532 Interleaving of A000400 and A067411 without initial term 1. %C A164532 Binomial transform is apparently A123011. Fourth binomial transform is A154235. %H A164532 G. C. Greubel, <a href="/A164532/b164532.txt">Table of n, a(n) for n = 1..1000</a> %H A164532 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,6). %F A164532 a(n) = (5 - (-1)^n)*6^(1/4*(2*n - 5 + (-1)^n)). %F A164532 G.f.: x*(1+4*x)/(1-6*x^2). %F A164532 a(n+3) = a(n+2)*a(n+1)/a(n). - _Reinhard Zumkeller_, Mar 04 2011 %F A164532 a(n) = ((1-(-1)^n)*sqrt(6)/2 + 2*(1+(-1)^n))*6^(n/2 -1). - _G. C. Greubel_, Jul 16 2021 %t A164532 LinearRecurrence[{0,6}, {1,4}, 40] (* _G. C. Greubel_, Jul 16 2021 *) %o A164532 (Magma) [ n le 2 select 3*n-2 else 6*Self(n-2): n in [1..29] ]; %o A164532 (Sage) [((1 - (-1)^n)*sqrt(6)/2 + 2*(1 + (-1)^n))*6^(n/2 -1) for n in (1..40)] # _G. C. Greubel_, Jul 16 2021 %Y A164532 Cf. A000400 (powers of 6), A067411, A123011, A154235. %K A164532 nonn %O A164532 1,2 %A A164532 _Klaus Brockhaus_, Aug 15 2009