This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164542 #20 Sep 08 2022 08:45:47 %S A164542 1,16,120,832,5696,38912,265728,1814528,12390400,84606976,577732608, %T A164542 3945005056,26938179584,183945396224,1256057733120,8576898695168, %U A164542 58566727696384,399918632009728,2730815234506752,18647172819976192 %N A164542 a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 16. %C A164542 Binomial transform of A164541. Fourth binomial transform of A164675. Inverse binomial transform of A164543. %H A164542 Vincenzo Librandi, <a href="/A164542/b164542.txt">Table of n, a(n) for n = 0..149</a> %H A164542 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8). %F A164542 a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 16. %F A164542 G.f.: (1+8*x)/(1-8*x+8*x^2). %F A164542 a(n) = ((1+3*sqrt(2))*(4+2*sqrt(2))^n + (1-3*sqrt(2))*(4-2*sqrt(2))^n)/2. %t A164542 LinearRecurrence[{8,-8},{1,16},30] (* _Harvey P. Dale_, Jul 23 2018 *) %o A164542 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((1+3*r)*(4+2*r)^n+(1-3*r)*(4-2*r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 20 2009 %Y A164542 Cf. A164541, A164675, A164543. %K A164542 nonn,easy %O A164542 0,2 %A A164542 Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009 %E A164542 Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 20 2009