This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164546 #17 Sep 08 2022 08:45:47 %S A164546 1,10,72,496,3392,23168,158208,1080320,7376896,50372608,343965696, %T A164546 2348744704,16038232064,109515898880,747821334528,5106443485184, %U A164546 34868977205248,238100269760512,1625850340442112,11102000565452800 %N A164546 a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 10. %C A164546 Binomial transform of A038761. Fourth binomial transform of A164640. Inverse binomial transform of A164547. %H A164546 Vincenzo Librandi, <a href="/A164546/b164546.txt">Table of n, a(n) for n = 0..149</a> %H A164546 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (8,-8). %F A164546 a(n) = 8*a(n-1) - 8*a(n-2) for n > 1; a(0) = 1, a(1) = 10. %F A164546 a(n) = ((2+3*sqrt(2))*(4+2*sqrt(2))^n + (2-3*sqrt(2))*(4-2*sqrt(2))^n)/4. %F A164546 G.f.: (1 + 2*x)/(1 - 8*x + 8*x^2). %F A164546 a(n) = 2*(2*sqrt(2))^(n-1)*(sqrt(2)*chebyshev_U(n, sqrt(2)) + chebyshev_U(n-1, sqrt(2))). - _G. C. Greubel_, Jul 17 2021 %t A164546 LinearRecurrence[{8,-8}, {1,10}, 30] (* _G. C. Greubel_, Jul 17 2021 *) %o A164546 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((2+3*r)*(4+2*r)^n+(2-3*r)*(4-2*r)^n)/4: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 19 2009 %o A164546 (Sage) [2*(2*sqrt(2))^(n-1)*(sqrt(2)*chebyshev_U(n, sqrt(2)) + chebyshev_U(n-1, sqrt(2))) for n in (0..30)] # _G. C. Greubel_, Jul 17 2021 %Y A164546 Cf. A038761, A164640, A164547. %K A164546 nonn,easy %O A164546 0,2 %A A164546 Al Hakanson (hawkuu(AT)gmail.com), Aug 15 2009 %E A164546 Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 19 2009