This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164575 #35 Aug 19 2019 11:08:10 %S A164575 0,0,4,12,56,240,1324,7392,49136,337920,2652244,21660672,196658216, %T A164575 1859020800,19192151164,206057828352,2385488163296,28669154426880, %U A164575 367966308562084,4893320282898432,68978503204900376,1005520890400604160,15445185289163949004,244890632417194278912 %N A164575 a(n) = n! * [x^n] 2*(tan(x))^2*(sec(x) + tan(x)). %H A164575 Masato Kobayashi, <a href="https://arxiv.org/abs/1908.00701">A new refinement of Euler numbers on counting alternating permutations</a>, arXiv:1908.00701 [math.CO], 2019. %F A164575 a(n-2) = |{up-down 2nd-max-upper permutations in S_n}| for n >= 2 (see Definition 3.4 in Kobayashi). %F A164575 a(0) = 0 and a(n) = 2*A000142(n)*Sum_{i,j,k>=0, (2*i+1)+(2*j+1)+k=n} A000111(2*i+1)*A000111(2*j+1)*A000111(k)/(A000142(2*i+1)*A000142(2*j+1)*A000142(k)) for n > 0 (see Lemma 3.6 in Kobayashi). %F A164575 a(2*n) = 2*A225689(2*n) (see Lemma 4.2 in Kobayashi). %F A164575 a(n) ~ n! * 2^(n+4) * n^2 / Pi^(n+3). - _Vaclav Kotesovec_, Aug 12 2019 %p A164575 gf := (2*sin(x)*tan(x))/(1 - sin(x)): ser := series(gf, x, 25): %p A164575 seq(n!*coeff(ser, x, n), n=0..23); # _Peter Luschny_, Aug 19 2019 %t A164575 CoefficientList[Series[2Tan[x]^2(Sec[x]+Tan[x]),{x,0,23}],x]*Table[n!,{n,0,23}] %o A164575 (PARI) my(x='x+O('x^30)); concat([0,0], Vec(serlaplace(2*(tan(x))^2*(1/cos(x) + tan(x))))) \\ _Michel Marcus_, Aug 13 2019 %Y A164575 Cf. A000111, A000142, A000182, A000364, A009764, A013525, A024283, A181937, A225688, A225689. %K A164575 nonn,easy %O A164575 0,3 %A A164575 _Stefano Spezia_, Aug 12 2019