This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164576 #26 Jan 13 2025 12:23:27 %S A164576 1,11,20,46,63,105,130,188,221,295,336,426,475,581,638,760,825,963, %T A164576 1036,1190,1271,1441,1530,1716,1813,2015,2120,2338,2451,2685,2806, %U A164576 3056,3185,3451,3588,3870,4015,4313,4466,4780,4941,5271,5440,5786,5963,6325,6510 %N A164576 Integer averages of the set of the first positive squares up to some n^2. %C A164576 Integers of the form A000330(k)/k, k listed in A007310. - _R. J. Mathar_, Aug 20 2009 %H A164576 Zak Seidov, <a href="/A164576/b164576.txt">Table of n, a(n) for n = 1..1000</a> %H A164576 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A164576 a(n) = A000330(A007310(n)) / A007310(n) = A175485(A007310(n)). - _Jaroslav Krizek_, May 28 2010 %F A164576 G.f. ( -x*(1+10*x+7*x^2+6*x^3) ) / ( (1+x)^2*(x-1)^3 ). - _R. J. Mathar_, Jan 25 2011 %F A164576 a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1). - _Colin Barker_, Dec 26 2015 %e A164576 a(1) = 1^2/1 is an integer. The average of the first two squares is (1^2+2^2)/2=5/2, not integer. %e A164576 The average of the first three squares is (1^2+2^2+3^2)/3=14/3, not integer. %e A164576 The average of the first five squares is (1^2+2^2+3^2+4^2+5^2)/ 5=11, integer, and constitutes a(2). %t A164576 s=0;lst={};Do[a=(s+=n^2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,6!}];lst %t A164576 Flatten[Table[{(1 + 3 k) (1 + 4 k), (1 + k) (11 + 12 k)}, {k, 0, 499}]] (* _Zak Seidov_, Aug 15 2012 *) %t A164576 Module[{nn=150,sq},sq=Range[nn]^2;Select[Table[Mean[Take[sq,n]],{n,nn}],IntegerQ]] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,11,20,46,63},50] (* _Harvey P. Dale_, Oct 31 2013 *) %o A164576 (PARI) a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1) \\ _Colin Barker_, Dec 26 2015 %Y A164576 Cf. A050248, A078617, A154293. %K A164576 nonn,easy %O A164576 1,2 %A A164576 _Vladimir Joseph Stephan Orlovsky_, Aug 16 2009 %E A164576 Edited by _R. J. Mathar_, Aug 20 2009