cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164576 Integer averages of the set of the first positive squares up to some n^2.

This page as a plain text file.
%I A164576 #26 Jan 13 2025 12:23:27
%S A164576 1,11,20,46,63,105,130,188,221,295,336,426,475,581,638,760,825,963,
%T A164576 1036,1190,1271,1441,1530,1716,1813,2015,2120,2338,2451,2685,2806,
%U A164576 3056,3185,3451,3588,3870,4015,4313,4466,4780,4941,5271,5440,5786,5963,6325,6510
%N A164576 Integer averages of the set of the first positive squares up to some n^2.
%C A164576 Integers of the form A000330(k)/k, k listed in A007310. - _R. J. Mathar_, Aug 20 2009
%H A164576 Zak Seidov, <a href="/A164576/b164576.txt">Table of n, a(n) for n = 1..1000</a>
%H A164576 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1).
%F A164576 a(n) = A000330(A007310(n)) / A007310(n) = A175485(A007310(n)). - _Jaroslav Krizek_, May 28 2010
%F A164576 G.f. ( -x*(1+10*x+7*x^2+6*x^3) ) / ( (1+x)^2*(x-1)^3 ). - _R. J. Mathar_, Jan 25 2011
%F A164576 a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1). - _Colin Barker_, Dec 26 2015
%e A164576 a(1) = 1^2/1 is an integer. The average of the first two squares is (1^2+2^2)/2=5/2, not integer.
%e A164576 The average of the first three squares is (1^2+2^2+3^2)/3=14/3, not integer.
%e A164576 The average of the first five squares is (1^2+2^2+3^2+4^2+5^2)/ 5=11, integer, and constitutes a(2).
%t A164576 s=0;lst={};Do[a=(s+=n^2)/n;If[Mod[a,1]==0,AppendTo[lst,a]],{n,6!}];lst
%t A164576 Flatten[Table[{(1 + 3 k) (1 + 4 k), (1 + k) (11 + 12 k)}, {k, 0, 499}]] (* _Zak Seidov_, Aug 15 2012 *)
%t A164576 Module[{nn=150,sq},sq=Range[nn]^2;Select[Table[Mean[Take[sq,n]],{n,nn}],IntegerQ]] (* or *) LinearRecurrence[{1,2,-2,-1,1},{1,11,20,46,63},50] (* _Harvey P. Dale_, Oct 31 2013 *)
%o A164576 (PARI) a(n) = 1/4*(12*n^2 - 6*n + (-1)^n*(4*n-1) + 1) \\ _Colin Barker_, Dec 26 2015
%Y A164576 Cf. A050248, A078617, A154293.
%K A164576 nonn,easy
%O A164576 1,2
%A A164576 _Vladimir Joseph Stephan Orlovsky_, Aug 16 2009
%E A164576 Edited by _R. J. Mathar_, Aug 20 2009