This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164584 #14 Jul 16 2021 16:06:40 %S A164584 1,6,12,136,272,3168,6336,73856,147712,1721856,3443712,40142848, %T A164584 80285696,935878656,1871757312,21818802176,43637604352,508677193728, %U A164584 1017354387456,11859151814656,23718303629312,276480808452096 %N A164584 Expansion of (1 + 6*x - 12*x^2 - 8*x^3)/(1 - 24*x^2 + 16*x^4). %C A164584 The signed sequence (-1)^C(n+1, 2)*a(n) with g.f. (1 - 6x + 12x^2 - 8x^3) / (1 + 24x^2 + 16x^4) is the Hankel transform of (-1)^C(n+1, 2)*A063886. %H A164584 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,24,0,-16). %F A164584 G.f.: (1 + 6*x - 12*x^2 - 8*x^3)/(1 - 24*x^2 + 16*x^4). %F A164584 a(n) = 2^n*((((3 + 2*sqrt(2))^((n+1)/2) + (3-2*sqrt(2))^((n+1)/2))/2)(1 - (-1)^n)/2 + (((3 + 2*sqrt(2))^(n/2) + (3 - 2*sqrt(2))^(n/2))/2)(1 + (-1)^n)/2). %t A164584 CoefficientList[Series[(1 + 6 x - 12 x^2 - 8 x^3)/(1 - 24 x^2 + 16 x^4), {x, 0, 20}], x] (* _Wesley Ivan Hurt_, Mar 30 2017 *) %t A164584 LinearRecurrence[{0,24,0,-16},{1,6,12,136},30] (* _Harvey P. Dale_, Jul 16 2021 *) %Y A164584 Cf. A063886. %K A164584 nonn,easy %O A164584 0,2 %A A164584 _Paul Barry_, Aug 17 2009