This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164588 #12 Sep 08 2022 08:45:47 %S A164588 1,9,73,577,4529,35481,277817,2174993,17027041,133295529,1043495593, %T A164588 8168931937,63949894289,500627099961,3919122796697,30680567267633, %U A164588 240180585132481,1880236207775049,14719292130498313,115228905772807297,902061091509601649 %N A164588 a(n) = ((3 + sqrt(18))*(5 + sqrt(8))^n + (3 - sqrt(18))*(5 - sqrt(8))^n)/6. %C A164588 Binomial transform of A057084. Second binomial transform of A002315. Third binomial transform of A108051 without initial 0. Fourth binomial transform of A096980. Fifth binomial transform of A094015. %H A164588 G. C. Greubel, <a href="/A164588/b164588.txt">Table of n, a(n) for n = 0..1000</a> %H A164588 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (10,-17). %F A164588 a(n) = 10*a(n-1) - 17*a(n-2) for n > 1; a(0) = 1, a(1) = 9. %F A164588 G.f.: (1-x)/(1-10*x+17*x^2). %F A164588 E.g.f.: (1/3)*exp(5*x)*(3*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - _G. C. Greubel_, Aug 12 2017 %t A164588 LinearRecurrence[{10,-17},{1,9},30] (* _Harvey P. Dale_, Sep 11 2016 *) %o A164588 (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+3*r)*(5+2*r)^n+(3-3*r)*(5-2*r)^n)/6: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 24 2009 %o A164588 (PARI) x='x+O('x^50); Vec((1-x)/(1-10*x+17*x^2)) \\ _G. C. Greubel_, Aug 12 2017 %Y A164588 Cf. A057084, A002315, A108051, A096980, A094015. %K A164588 nonn %O A164588 0,2 %A A164588 Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009 %E A164588 Extended by _Klaus Brockhaus_ and _R. J. Mathar_ Aug 24 2009