This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164590 #16 Sep 08 2022 08:45:47 %S A164590 1,11,110,1100,11000,110000,1100000,10999945,109998900,1099983555, %T A164590 10999781100,109997266500,1099967220000,10999617750000, %U A164590 109995633002970,1099950885086625,10999454401704780,109993999528128375 %N A164590 Number of reduced words of length n in Coxeter group on 11 generators S_i with relations (S_i)^2 = (S_i S_j)^7 = I. %C A164590 The initial terms coincide with those of A003953, although the two sequences are eventually different. %C A164590 Computed with MAGMA using commands similar to those used to compute A154638. %H A164590 G. C. Greubel, <a href="/A164590/b164590.txt">Table of n, a(n) for n = 0..995</a> %H A164590 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (9,9,9,9,9,9,-45). %F A164590 G.f.: (t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(45*t^7 - 9*t^6 - 9*t^5 - 9*t^4 - 9*t^3 - 9*t^2 - 9*t + 1). %F A164590 a(n) = -45*a(n-7) + 9*Sum_{k=1..6} a(n-k). - _Wesley Ivan Hurt_, May 11 2021 %p A164590 seq(coeff(series((1+t)*(1-t^7)/(1-10*t+54*t^7-45*t^8), t, n+1), t, n), n = 0 .. 30); # _G. C. Greubel_, Aug 28 2019 %t A164590 CoefficientList[Series[(1+t)*(1-t^7)/(1-10*t+54*t^7-45*t^8), {t, 0, 30}], t] (* _G. C. Greubel_, Aug 12 2017 *) %t A164590 coxG[{7, 45, -9}] (* The coxG program is at A169452 *) (* _G. C. Greubel_, Aug 28 2019 *) %o A164590 (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^7)/(1-10*t+54*t^7-45*t^8)) \\ _G. C. Greubel_, Aug 12 2017 %o A164590 (Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^7)/(1-10*t+54*t^7-45*t^8) )); // _G. C. Greubel_, Aug 28 2019 %o A164590 (Sage) %o A164590 def A164590_list(prec): %o A164590 P.<t> = PowerSeriesRing(ZZ, prec) %o A164590 return P((1+t)*(1-t^7)/(1-10*t+54*t^7-45*t^8)).list() %o A164590 A164590_list(30) # _G. C. Greubel_, Aug 28 2019 %o A164590 (GAP) a:=[11, 110, 1100, 11000, 110000, 1100000, 10999945];; for n in [8..30] do a[n]:=9*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]+a[n-6]) -45*a[n-7]; od; Concatenation([1], a); # _G. C. Greubel_, Aug 28 2019 %K A164590 nonn %O A164590 0,2 %A A164590 _John Cannon_ and _N. J. A. Sloane_, Dec 03 2009