cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164659 Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).

This page as a plain text file.
%I A164659 #10 Oct 06 2016 09:14:22
%S A164659 1,1,2,1,1,3,1,2,1,1,1,1,3,1,5,1,2,1,1,1,3,1,1,1,1,5,1,7,1,2,1,1,1,3,
%T A164659 1,1,1,1,3,1,1,1,7,1,9,1,2,1,1,1,1,1,1,1,5,1,1,3,1,1,1,1,1,9,1,11,1,2,
%U A164659 1,1,1,3,1,1,1,5,1,3,1,1,1,1,1,1,1,1,1,1,11,1,13,1,2,1,1,1,3,1,1,1,1,1,3,1
%N A164659 Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x).
%C A164659 The numerators are given in A164658.
%C A164659 See the W. Lang link in A164658 for this table and the rational table A164658/A164659.
%H A164659 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>
%F A164659 a(n,m) = denominator(b(n,m)), with int(T(n,x),x)= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind.
%e A164659 Rational table A164658(n,m)/a(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],...
%t A164659 row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Denominator; Table[row[n], {n, 0, 13}] // Flatten (* _Jean-François Alcover_, Oct 06 2016 *)
%Y A164659 Row sums of this triangle give A164663.
%Y A164659 Row sums of rational triangle A164658/A164659 are given in A164660/A164661.
%K A164659 nonn,frac,tabl,easy
%O A164659 0,3
%A A164659 _Wolfdieter Lang_, Oct 16 2009