This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164659 #10 Oct 06 2016 09:14:22 %S A164659 1,1,2,1,1,3,1,2,1,1,1,1,3,1,5,1,2,1,1,1,3,1,1,1,1,5,1,7,1,2,1,1,1,3, %T A164659 1,1,1,1,3,1,1,1,7,1,9,1,2,1,1,1,1,1,1,1,5,1,1,3,1,1,1,1,1,9,1,11,1,2, %U A164659 1,1,1,3,1,1,1,5,1,3,1,1,1,1,1,1,1,1,1,1,11,1,13,1,2,1,1,1,3,1,1,1,1,1,3,1 %N A164659 Denominators of coefficients of integrated Chebyshev polynomials T(n,x) (in increasing order of powers of x). %C A164659 The numerators are given in A164658. %C A164659 See the W. Lang link in A164658 for this table and the rational table A164658/A164659. %H A164659 <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a> %F A164659 a(n,m) = denominator(b(n,m)), with int(T(n,x),x)= sum(b(n,m)*x^m,m=1..n+1), n>=0, where T(n,x) are Chebyshevs polynomials of the first kind. %e A164659 Rational table A164658(n,m)/a(n,m) = [1], [0, 1/2], [-1, 0, 2/3], [0, -3/2, 0, 1], [1, 0, -8/3, 0, 8/5],... %t A164659 row[n_] := CoefficientList[Integrate[ChebyshevT[n, x], x], x] // Rest // Denominator; Table[row[n], {n, 0, 13}] // Flatten (* _Jean-François Alcover_, Oct 06 2016 *) %Y A164659 Row sums of this triangle give A164663. %Y A164659 Row sums of rational triangle A164658/A164659 are given in A164660/A164661. %K A164659 nonn,frac,tabl,easy %O A164659 0,3 %A A164659 _Wolfdieter Lang_, Oct 16 2009