cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164677 For a binary reflected Gray code, the (Hamming/Euclidean) distance between 2 subsequent points x and y is 1, say in coordinate k. If y has a 1 in coordinate k and x has a 0, than (x,y) is indicated by k, if it is the other way around, (x,y) is indicated by -k. The sequence has a fractal character such that G(d+1) = G(d) d+1 R(G(d)) where R(G(d)) alters d --> -d and leaves all other numbers invariant.

Table of values

n a(n)
1 1
2 2
3 -1
4 3
5 1
6 -2
7 -1
8 4
9 1
10 2
11 -1
12 -3
13 1
14 -2
15 -1
16 5
17 1
18 2
19 -1
20 3
21 1
22 -2
23 -1
24 -4
25 1
26 2
27 -1
28 -3
29 1
30 -2
31 -1
32 6
33 1
34 2
35 -1
36 3
37 1
38 -2
39 -1
40 4
41 1
42 2
43 -1
44 -3
45 1
46 -2
47 -1
48 -5
49 1
50 2
51 -1
52 3
53 1
54 -2
55 -1
56 -4
57 1
58 2
59 -1
60 -3
61 1
62 -2
63 -1
64 7
65 1
66 2
67 -1
68 3
69 1
70 -2
71 -1
72 4
73 1
74 2
75 -1
76 -3
77 1
78 -2
79 -1
80 5

List of values

[1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, 5, 1, 2, -1, 3, 1, -2, -1, -4, 1, 2, -1, -3, 1, -2, -1, 6, 1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, -5, 1, 2, -1, 3, 1, -2, -1, -4, 1, 2, -1, -3, 1, -2, -1, 7, 1, 2, -1, 3, 1, -2, -1, 4, 1, 2, -1, -3, 1, -2, -1, 5]