This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164682 #10 Jun 30 2023 01:07:55 %S A164682 5,8,10,16,20,32,40,64,80,128,160,256,320,512,640,1024,1280,2048,2560, %T A164682 4096,5120,8192,10240,16384,20480,32768,40960,65536,81920,131072, %U A164682 163840,262144,327680,524288,655360,1048576,1310720,2097152,2621440,4194304 %N A164682 a(n) = 2*a(n-2) for n > 2; a(1) = 5, a(2) = 8. %C A164682 Interleaving of A020714 and A000079 without initial terms 1, 2, 4. %C A164682 First differences are in A162255. %C A164682 Binomial transform is A135532 without initial terms -1, 3. Fourth binomial transform is A164537. %H A164682 Vincenzo Librandi, <a href="/A164682/b164682.txt">Table of n, a(n) for n = 1..1000</a> %H A164682 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0, 2). %F A164682 a(n) = (9-(-1)^n)*2^(1/4*(2*n-5+(-1)^n)). %F A164682 G.f.: x*(5+8*x)/(1-2*x^2). %t A164682 LinearRecurrence[{0,2},{5,8},60] (* _Harvey P. Dale_, Jul 20 2022 *) %o A164682 (Magma) [ n le 2 select 2+3*n else 2*Self(n-2): n in [1..40] ]; %Y A164682 Equals A094958 (numbers of the form 2^n or 5*2^n) without initial terms 1, 2, 4. %Y A164682 Cf. A020714 (5*2^n), A000079 (powers of 2), A162255, A135532, A164537. %K A164682 nonn,easy %O A164682 1,1 %A A164682 _Klaus Brockhaus_, Aug 21 2009