cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A164731 Number of cycles of n-digit numbers (including fixed points) under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 3, 3, 1, 4, 3, 8, 3, 16, 5, 27, 8, 46, 9, 73, 11, 110, 16, 162, 25, 231, 37, 318, 58, 429, 88, 572, 132, 747, 192, 963, 269, 1229, 372, 1551, 500, 1939, 662, 2401, 864, 2948, 1115, 3586, 1421, 4330, 1792, 5194, 2240, 6191, 2764, 7338, 3382, 8650, 4105
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165006 (base 3), A165025 (base 4), A165045 (base 5), A165064 (base 6), A165084 (base 7), A165103 (base 8), A165123 (base 9). [Joseph Myers, Sep 05 2009]

A164732 Number of n-digit numbers in a cycle (including fixed points) under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 10, 9, 8, 12, 16, 22, 14, 42, 18, 73, 29, 125, 34, 199, 38, 308, 49, 462, 71, 665, 105, 920, 161, 1243, 249, 1658, 379, 2170, 555, 2806, 780, 3587, 1075, 4539, 1449, 5689, 1922, 7059, 2516, 8677, 3252, 10566, 4156, 12774, 5255, 15337, 6578, 18300
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165007 (base 3), A165026 (base 4), A165046 (base 5), A165065 (base 6), A165085 (base 7), A165104 (base 8), A165124 (base 9). [Joseph Myers, Sep 05 2009]

A164733 Number of n-digit fixed points under the Kaprekar map A151949.

Original entry on oeis.org

1, 0, 1, 1, 0, 2, 0, 2, 2, 3, 1, 5, 1, 6, 2, 8, 2, 12, 3, 14, 5, 17, 7, 21, 8, 25, 12, 30, 14, 36, 17, 43, 21, 49, 25, 58, 31, 66, 36, 75, 43, 85, 49, 96, 58, 109, 66, 121, 75, 136, 86, 150, 96, 167, 109, 184, 121, 202, 136, 222, 150, 242, 167, 265, 185, 287, 202, 313, 222, 338
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Bisections: A309223, A309224.
In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A165125 (base 9). [From Joseph Myers, Sep 05 2009]

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) + a(n-6) - a(n-8) + a(n-9) - a(n-11) + a(n-14) - a(n-15) - a(n-16) + a(n-17) - a(n-20) + a(n-22) - a(n-23) + a(n-25) + a(n-29) - a(n-31) for n > 33.
G.f.: x*(-x^32 + x^31 - x^29 + x^28 - x^27 + x^26 - x^24 + 2*x^23 - x^22 + x^21 + x^20 + 2*x^18 - x^17 + x^16 + 2*x^15 - 3*x^14 + 2*x^13 - x^12 + x^11 - x^9 + 2*x^8 - x^6 + x^5 - x^4 + x^3 + 1)/(x^31 - x^29 - x^25 + x^23 - x^22 + x^20 - x^17 + x^16 + x^15 - x^14 + x^11 - x^9 + x^8 - x^6 - x^2 + 1). (End)

A164734 Number of n-digit cycles of length 2 under the Kaprekar map A151949.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 2, 0, 2, 0, 1, 0, 1, 2, 1, 1, 1, 1, 1, 0, 3, 0, 3, 0, 2, 0, 2, 3, 1, 2, 1, 2, 1, 1, 4, 1, 4, 0, 3, 0, 3, 4, 2, 3, 2, 3, 1, 2, 5, 2, 5, 1, 4, 1, 4, 5, 3, 4, 3, 4, 2, 3, 7, 3, 6, 2, 5, 2, 5, 7, 4, 6, 4, 5, 3, 4, 9, 4, 8, 3, 7, 3, 6, 9, 5, 8, 5, 7, 4
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-7) + a(n-9) + a(n-14) - a(n-16) - a(n-21) - a(n-23) + a(n-30) for n > 41.
G.f.: x*(-x^40 - x^38 - x^36 + x^33 - x^32 + 2*x^31 - x^30 + 2*x^29 - x^28 + x^27 + x^25 - x^24 + 2*x^23 - x^22 + 2*x^21 - 2*x^20 + x^19 - x^16 - x^15 - x^14 + x^13 - x^12 + x^11 - x^4)/(x^30 - x^23 - x^21 - x^16 + x^14 + x^9 + x^7 - 1). (End)

A164735 Number of n-digit cycles of length 3 under the Kaprekar map A151949.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 10, 0, 20, 0, 36, 0, 60, 1, 94, 4, 141, 10, 204, 21, 286, 39, 392, 66, 527, 105, 696, 159, 906, 231, 1164, 326, 1477, 449, 1854, 605, 2304, 801, 2836, 1044, 3462, 1341, 4194, 1701, 5044, 2133, 6027, 2646, 7158, 3252, 8452, 3963
Offset: 1

Views

Author

Joseph Myers, Aug 23 2009

Keywords

Crossrefs

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = 4*a(n-2) - 6*a(n-4) + 5*a(n-6) - 5*a(n-8) + a(n-9) + 6*a(n-10) - 4*a(n-11) - 4*a(n-12) + 6*a(n-13) + a(n-14) - 5*a(n-15) + 5*a(n-17) - 6*a(n-19) + 4*a(n-21) - a(n-23) for n > 25.
G.f.: x*(-x^24 + x^22 + x^18 - x^16 + x^15 - x^13 + x^7)/((x - 1)^6*(x + 1)^5*(x^2 - x + 1)*(x^2 + x + 1)^2*(x^6 + x^3 + 1)). (End)
Showing 1-5 of 5 results.