This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164737 #10 Sep 08 2022 08:45:47 %S A164737 5,12,40,96,320,768,2560,6144,20480,49152,163840,393216,1310720, %T A164737 3145728,10485760,25165824,83886080,201326592,671088640,1610612736, %U A164737 5368709120,12884901888,42949672960,103079215104,343597383680,824633720832 %N A164737 a(n) = 8*a(n-2) for n > 2; a(1) = 5, a(2) = 12. %C A164737 Interleaving of 5*A001018 and 12*A001018. %C A164737 Binomial transform is A096980 without initial terms 1. Second binomial transform is A164593. Third binomial transform is A101386. %H A164737 Vincenzo Librandi, <a href="/A164737/b164737.txt">Table of n, a(n) for n = 1..1000</a> %H A164737 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,8). %F A164737 a(n) = (13 - 7*(-1)^n)*2^(1/4*(6*n - 11 + 3*(-1)^n)). %F A164737 G.f.: x*(5 + 12*x)/(1 - 8*x^2). %p A164737 seq(coeff(series( x*(5+12*x)/(1-8*x^2) , x, n+1), x, n), n=1..30); # _G. C. Greubel_, Apr 16 2020 %t A164737 LinearRecurrence[{0,8}, {5,12}, 30] (* _G. C. Greubel_, Apr 16 2020 *) %o A164737 (Magma) [ n le 2 select 7*n-2 else 8*Self(n-2): n in [1..26] ]; %o A164737 (Sage) [(13 -7*(-1)^n)*2^((6*n -11 +3*(-1)^n)/4) for n in (1..30)] # _G. C. Greubel_, Apr 16 2020 %Y A164737 Cf. A001018 (powers of 8), A067412, A096980, A101386, A164593. %K A164737 nonn %O A164737 1,1 %A A164737 _Klaus Brockhaus_, Aug 24 2009