This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164786 #24 Sep 08 2022 08:45:47 %S A164786 1,57,505,4089,32761,262137,2097145,16777209,134217721,1073741817, %T A164786 8589934585,68719476729,549755813881,4398046511097,35184372088825, %U A164786 281474976710649,2251799813685241,18014398509481977,144115188075855865 %N A164786 a(n) = 8^n-7. %C A164786 Minoli defined the sequences and concepts that follow in the 1980 IEEE paper below: - Sequence m(n,t) = (n^t) - (n-1) for t=2 to infinity is called a Mersenne Sequence Rooted on n - If n is prime, this sequence is called a Legitimate Mersenne Sequence - Any j belonging to the sequence m(n,t) is called a Generalized Mersenne Number (n-GMN) - If j belonging to the sequence m (n,t) is prime, it is then called a n-Generalized Mersenne Prime (n-GMP). Note: m (n,t) = n* m (n,t-1) + n^2 - 2*n+1. This sequence related to sequences: A014232 and A014224; A135535 and A059266. These numbers play a role in the context of hyperperfect numbers. For additional references, beyond key ones listed below, see A164783. %D A164786 Daniel Minoli, Voice over MPLS, McGraw-Hill, New York, NY, 2002, ISBN 0-07-140615-8 (p.114-134) %H A164786 Vincenzo Librandi, <a href="/A164786/b164786.txt">Table of n, a(n) for n = 1..1000</a> %H A164786 Daniel Minoli and Robert Bear, <a href="http://www.pme-math.org/journal/issues/PMEJ.Vol.6.No.3.pdf">Hyperperfect Numbers</a>, Pi Mu Epsilon Journal, Fall 1975, pp. 153-157. %H A164786 Daniel Minoli, W. Nakamine, <a href="http://dx.doi.org/10.1109/ICASSP.1980.1170906">Mersenne Numbers Rooted On 3 For Number Theoretic Transforms</a>, 1980 IEEE International Conf. on Acoust., Speech and Signal Processing. %H A164786 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9, -8). %F A164786 a(n) = 8*a(n-1)+49, with a(1)=1. - _Vincenzo Librandi_, Nov 30 2010 %F A164786 G.f.: x*(1+48*x)/(1-9*x+8*x^2). a(n) = 9*a(n-1)-8*a(n-2). - _Colin Barker_, Jan 28 2012 %F A164786 E.g.f.: 6 + (exp(7*x) - 7)*exp(x). - _Ilya Gutkovskiy_, Jun 11 2016 %t A164786 8^Range[20]-7 (* or *) LinearRecurrence[{9,-8},{1,57},20] (* _Harvey P. Dale_, Jan 24 2013 *) %o A164786 (Magma) [8^n-7: n in [1..20]]; // _Vincenzo Librandi_, Aug 22 2011 %K A164786 nonn,easy %O A164786 1,2 %A A164786 Daniel Minoli (daniel.minoli(AT)ses.com), Aug 26 2009 %E A164786 More terms a(7)-a(19) from _Vincenzo Librandi_, Oct 29 2009