This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164791 #21 Apr 21 2023 11:37:54 %S A164791 9,1,9,20,7,11,15,13,17,47,27,77,109,120,107,111,115,113,117,147,127, %T A164791 177,327,377,1120,1107,1111,1115,1113,1117,1147,1127,1177,1327,1377, %U A164791 3327,3377,11377,13327,13377,17377,23327,23377,73377,101377,103327,103377 %N A164791 a(n) is the smallest nonnegative number whose American English name has the letter "n" in the n-th position. %D A164791 GCHQ, The GCHQ Puzzle Book, Penguin, 2016. See page 70. %e A164791 a(1)=9 ("Nine"), a(2)=1 ("oNe"), a(3)=9 ("niNe"), a(4)=20 ("tweNty"). %o A164791 (Python) %o A164791 from num2words import num2words %o A164791 from itertools import count, islice %o A164791 def n2w(n): %o A164791 return "".join(c for c in num2words(n).replace(" and", "") if c.isalpha()) %o A164791 def a(n): %o A164791 return next(i for i in count(0) if len(w:=n2w(i))>=n and w[n-1]=="n") %o A164791 print([a(n) for n in range(1, 41)]) # _Michael S. Branicky_, Apr 21 2023 %o A164791 (Python) # faster for initial segment of sequence; uses n2w, imports above %o A164791 def agen(): # generator of terms %o A164791 adict, n = dict(), 1 %o A164791 for i in count(0): %o A164791 w = n2w(i) %o A164791 if "n" in w: %o A164791 locs = [i+1 for i, c in enumerate(w) if w[i] == "n"] %o A164791 for v in locs: %o A164791 if v not in adict: adict[v] = i %o A164791 while n in adict: yield adict[n]; n += 1 %o A164791 print(list(islice(agen(), 50))) # _Michael S. Branicky_, Apr 21 2023 %Y A164791 Cf. A164789 ("o"), A164790 ("e"), A164792 ("t"), A164793 ("i"), A164794 ("f"), A164795 ("h"), A164796 ("r"), A164797 ("u"). %K A164791 nonn,word %O A164791 1,1 %A A164791 _Claudio Meller_, Aug 26 2009 %E A164791 a(25) and beyond from _Michael S. Branicky_, Mar 25 2021 %E A164791 Definition clarified by _N. J. A. Sloane_, Apr 20 2023. We also need a British English analog of this, just as A362121 is an analog of A164790 (a(13) will be different).