This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164822 #28 Mar 27 2019 10:51:51 %S A164822 1,1,2,1,2,1,1,2,2,2,1,4,1,5,1,1,2,2,2,1,4,1,4,1,7,1,4,1,1,2,3,4,1,6, %T A164822 1,4,1,4,2,5,1,8,1,5,2,1,2,2,2,3,4,1,2,2,6,1,4,1,11,1,4,1,11,1,4,1,1, %U A164822 2,2,2,1,4,4,2,2,2,1,6,1,4,2,5,1,8,1,9,2,4,1,9,1,1,4,2,8,1,8,1,8,2,4,1,14,1 %N A164822 Triangle read by rows, giving the number of solutions mod j of T_k(x) = 1, for j >= 2 and k = 1:j-1, where T_k is the k'th Chebyshev polynomial of the first kind. %C A164822 T_k(0) = 1 if k == 0 mod 4, but x=0 is not counted as a solution. - _Robert Israel_, Apr 06 2015 %H A164822 C. H. Gribble, <a href="/A164822/b164822.txt">Flattened triangle, for j = 2:100 and k = 1:j-1</a>. %F A164822 From _Robert Israel_, Apr 06 2015 (Start): %F A164822 a(k,j) is multiplicative in j for each odd k. %F A164822 a(k,j)+1 is multiplicative in j for k divisible by 4. %F A164822 a(k,j)+[j=2] is multiplicative in j for k == 2 mod 4, where [j=2] = 1 if j=2, 0 otherwise. %F A164822 a(1,j) = 1. %F A164822 a(2,j) = A060594(j) if j is odd, A060594(j/2) if j is even. %F A164822 a(3,2^m) = 1. %F A164822 a(3,p^m) = p^floor(m/2)+1 if p is a prime > 3. %F A164822 a(4,p^m) = p^floor(m/2)+1 if p is a prime > 2. %F A164822 a(5,p) = 3 if p is in A045468, 1 for other primes p. (End) %e A164822 The triangle of numbers is: %e A164822 .....k..1..2..3..4..5..6..7..8..9.10 %e A164822 ..j.. %e A164822 ..2.....1 %e A164822 ..3.....1..2 %e A164822 ..4.....1..2..1 %e A164822 ..5.....1..2..2..2 %e A164822 ..6.....1..4..1..5..1 %e A164822 ..7.....1..2..2..2..1..4 %e A164822 ..8.....1..4..1..7..1..4..1 %e A164822 ..9.....1..2..3..4..1..6..1..4 %e A164822 .10.....1..4..2..5..1..8..1..5..2 %e A164822 .11.....1..2..2..2..3..4..1..2..2..6 %p A164822 seq(seq(nops(select(t -> orthopoly[T](k, t)-1 mod j = 0, [$1..j-1])), k=1..j-1), j=2..20); # _Robert Israel_, Apr 06 2015 %t A164822 Table[Length[Select[Range[j-1], Mod[ChebyshevT[k, #]-1, j] == 0&]], {j, 2, 20}, {k, 1, j-1}] // Flatten (* _Jean-François Alcover_, Mar 27 2019, after _Robert Israel_ *) %Y A164822 Cf. A045468, A164823, A164831, A164846, A165252. %K A164822 nonn,tabl %O A164822 1,3 %A A164822 _Christopher Hunt Gribble_, Aug 27 2009 %E A164822 Sequence and definition corrected by _Christopher Hunt Gribble_, Sep 10 2009 %E A164822 Minor edit by _N. J. A. Sloane_, Sep 13 2009