cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164823 Irregular triangle read by rows, listing the values x for which T_k(x) == 1 (mod j) for j >= 2 and k = 1..j-1, where T_k are the Chebyshev polynomials of the first kind.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 4, 1, 2, 1, 4, 1, 1, 2, 4, 5, 1, 1, 2, 3, 4, 5, 1, 1, 1, 6, 1, 3, 1, 6, 1, 1, 3, 4, 6, 1, 1, 3, 5, 7, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 3, 5, 7, 1, 1, 1, 8, 1, 4, 7, 1, 3, 6, 8, 1, 1, 2, 4, 5, 7, 8, 1, 1, 3, 6, 8, 1, 1, 4, 6, 9, 1, 7, 1, 4, 5, 6, 9, 1, 1, 2, 3, 4, 6, 7, 8, 9, 1, 1, 4, 5
Offset: 1

Views

Author

Keywords

Examples

			The values are listed horizontally in increasing order for each (j, k) under the column headed "cos(2*Pi/k) mod j".
The column headed "nov" is the number of values. The values read downwards form A164822.
I call "cos(x) mod j" the "Discrete Cosine of x modulo j".
cos(2*Pi/k) mod j can be calculated by expressing cos(2*Pi) as a polynomial P in cos(2*Pi/k), for which the coefficients are those of Chebyshev's T(n,x) polynomials (A053120), and then solving P - 1 == 0 (mod j) by trial and error.
...j.......k.....nov....cos(2*Pi/k).mod.j
...2.......1.......1.......1
...3.......1.......1.......1
...........2.......2.......1.......2
...4.......1.......1.......1
...........2.......2.......1.......3
...........3.......1.......1
...5.......1.......1.......1
...........2.......2.......1.......4
...........3.......2.......1.......2
...........4.......2.......1.......4
...6.......1.......1.......1
...........2.......4.......1.......2.......4.......5
...........3.......1.......1
...........4.......5.......1.......2.......3.......4.......5
...........5.......1.......1
...7.......1.......1.......1
...........2.......2.......1.......6
...........3.......2.......1.......3
...........4.......2.......1.......6
...........5.......1.......1
...........6.......4.......1.......3.......4.......6
...8.......1.......1.......1
...........2.......4.......1.......3.......5.......7
...........3.......1.......1
...........4.......7.......1.......2.......3.......4.......5.......6.......7
...........5.......1.......1
...........6.......4.......1.......3.......5.......7
...........7.......1.......1
...9.......1.......1.......1
...........2.......2.......1.......8
...........3.......3.......1.......4.......7
...........4.......4.......1.......3.......6.......8
...........5.......1.......1
...........6.......6.......1.......2.......4.......5.......7.......8
...........7.......1.......1
...........8.......4.......1.......3.......6.......8
..10.......1.......1.......1
...........2.......4.......1.......4.......6.......9
...........3.......2.......1.......7
...........4.......5.......1.......4.......5.......6.......9
...........5.......1.......1
...........6.......8.......1.......2.......3.......4.......6.......7.......8.......9
...........7.......1.......1
...........8.......5.......1.......4.......5.......6.......9
...........9.......2.......1.......7
..11.......1.......1.......1
...........2.......2.......1......10
...........3.......2.......1.......5
...........4.......2.......1......10
...........5.......3.......1.......7.......9
...........6.......4.......1.......5.......6......10
...........7.......1.......1
...........8.......2.......1......10
...........9.......2.......1.......5
..........10.......6.......1.......2.......4.......7.......9......10
		

Crossrefs

Programs

  • Maple
    seq(seq(seq(`if`(orthopoly[T](k,t)-1 mod j = 0, t,NULL),t=1..j-1),k=1..j-1),j=2..20); # Robert Israel, Apr 06 2015

Extensions

Sequence corrected by Christopher Hunt Gribble, Sep 10 2009
Minor edit by N. J. A. Sloane, Sep 13 2009
Minor edit by Christopher Hunt Gribble, Oct 01 2009