This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164874 #19 Jun 13 2025 08:20:31 %S A164874 2,5,6,11,13,14,23,27,29,30,47,55,59,61,62,95,111,119,123,125,126,191, %T A164874 223,239,247,251,253,254,383,447,479,495,503,507,509,510,767,895,959, %U A164874 991,1007,1015,1019,1021,1022,1535,1791,1919,1983,2015,2031,2039,2043,2045,2046 %N A164874 Triangle read by rows: T(1,1)=2; T(n,k)=2*T(n-1,k)+1, 1<=k<n; T(n,n)=2*(T(n-1,n-1)+1). %C A164874 All terms contain exactly 1 zero in binary representation. %H A164874 Reinhard Zumkeller, <a href="/A164874/b164874.txt">Rows n = 1..100 of triangle, flattened</a> %F A164874 T(n,k) = 2^(n+1) - 2^(n-k) - 1, 1 <= k <= n. %F A164874 T(n,k) = A030130(n*(n-1)/2 + k + 1); %F A164874 A023416(T(n,k)) = 1, 1<=k<=n; %F A164874 A059673(n) = sum of n-th row; %F A164874 T(n,1) = A055010(n); %F A164874 T(n,2) = A086224(n-2) for n > 1; %F A164874 T(n,n-1) = A036563(n+1) for n > 1; %F A164874 T(n,n) = A000918(n+1). %e A164874 Initial rows: %e A164874 1: 2 %e A164874 2: 5 6 %e A164874 3: 11 13 14 %e A164874 4: 23 27 29 30 %e A164874 5: 47 55 59 61 62 %e A164874 6: 95 111 119 123 125 126 %e A164874 also in binary representation: %e A164874 10 %e A164874 101 110 %e A164874 1011 1101 1110 %e A164874 10111 11011 11101 11110 %e A164874 101111 110111 111011 111101 111110 %e A164874 1011111 1101111 1110111 1111011 1111101 1111110 . %t A164874 A164874row[n_] := 2^(n + 1) - 1 - BitShiftRight[2^n, Range[n]]; %t A164874 Array[A164874row, 10] (* _Paolo Xausa_, Jun 13 2025 *) %o A164874 (Haskell) %o A164874 a164874 n k = a164874_tabl !! (n-1) !! (k-1) %o A164874 a164874_row n = a164874_tabl !! (n-1) %o A164874 a164874_tabl = map reverse $ iterate f [2] where %o A164874 f xs@(x:_) = (2 * x + 2) : map ((+ 1) . (* 2)) xs %o A164874 -- _Reinhard Zumkeller_, Mar 31 2015 %o A164874 (Python) %o A164874 from math import isqrt %o A164874 def A164874(n): return (1<<(a:=(isqrt(n<<3)+1>>1)+1))-(1<<(a*(a-1)>>1)-n)-1 # _Chai Wah Wu_, May 21 2025 %Y A164874 Cf. A030130, A023416, A059673, A055010, A086224, A036563, A000918. %K A164874 nonn,tabl %O A164874 1,1 %A A164874 _Reinhard Zumkeller_, Aug 29 2009