This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164893 #15 May 13 2013 01:54:10 %S A164893 2,11,93,751,12027,192445,6158257,197064243,6306055799,201793785597, %T A164893 6457401139135,413273672904677,26449515065899369,1692768964217559659, %U A164893 108337213709923818223,6933581677435124366325,443749227355847959444859,28399950550774269404471037 %N A164893 Base 10 representation of the string formed by appending primes in base 2. %C A164893 The subsequence of primes begins: 2, 11, 751. [_Jonathan Vos Post_, May 26 2010] %H A164893 Charles R Greathouse IV, <a href="/A164893/b164893.txt">Table of n, a(n) for n = 1..335</a> (all terms under 1000 digits) %F A164893 a(n) = A154703(n) [converted from base 2 to base 10]. [_Jonathan Vos Post_, May 26 2010] %e A164893 The primes in base 2 (10, 11, 101, 111,...) concatenated by appending give the first four binary terms 10, 1011, 1011101, 1011101111; or 2, 11, 93, 751 base 10. %t A164893 nn=20;With[{b2p=IntegerDigits[#,2]&/@Prime[Range[nn]]},Table[ FromDigits[ Flatten[ Take[b2p,n]],2],{n,nn}]] (* _Harvey P. Dale_, Mar 26 2013 *) %o A164893 (PARI) list(n)=my(p=primes(n),s);vector(n,i,s=s<<#binary(p[i])+p[i]) \\ _Charles R Greathouse IV_, Mar 26 2013 %Y A164893 Cf. A000040, A004676, A007088, A100003, A154703. %K A164893 base,easy,nonn %O A164893 1,1 %A A164893 _Gil Broussard_, Aug 29 2009 %E A164893 Corrected by _Harvey P. Dale_, Mar 26 2013