This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164907 #25 Sep 08 2022 08:45:47 %S A164907 1,5,13,41,121,365,1093,3281,9841,29525,88573,265721,797161,2391485, %T A164907 7174453,21523361,64570081,193710245,581130733,1743392201,5230176601, %U A164907 15690529805,47071589413,141214768241,423644304721,1270932914165 %N A164907 a(n) = (3*3^n-(-1)^n)/2. %C A164907 Interleaving of A096053 and A083884 without initial term 1. %C A164907 Partial sums are (essentially) in A080926. %C A164907 First differences are (essentially) in A105723. %C A164907 a(n)+a(n+1) = A008776(n+1) = A099856(n+1) = A110593(n+2). %C A164907 Binomial transform of A056450. Inverse binomial transform of A164908. %H A164907 Vincenzo Librandi, <a href="/A164907/b164907.txt">Table of n, a(n) for n = 0..200</a> %H A164907 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (2,3). %F A164907 a(n) = 2*a(n-1)+3*a(n-2) for n > 1; a(0) = 1, a(1) = 5. %F A164907 G.f.: (1+3*x)/((1+x)*(1-3*x)). %F A164907 a(n) = 3*a(n-1)+2*(-1)^n. - _Carmine Suriano_, Mar 21 2014 %p A164907 A164907:=n->(3*3^n - (-1)^n)/2; seq(A164907(n), n=0..30); # _Wesley Ivan Hurt_, Mar 21 2014 %t A164907 Table[(3*3^n - (-1)^n)/2, {n, 0, 30}] (* _Wesley Ivan Hurt_, Mar 21 2014 *) %t A164907 LinearRecurrence[{2,3},{1,5},50] (* _Harvey P. Dale_, Oct 31 2018 *) %o A164907 (Magma) [ (3*3^n-(-1)^n)/2: n in [0..25] ]; %Y A164907 Equals A046717 without initial term 1 and A080925 without initial term 0. Equals A084182 / 2 from second term onward. %Y A164907 Cf. A096053, A083884, A080926, A105723, A008776, A099856, A110593, A056450, A164908. %K A164907 nonn,easy %O A164907 0,2 %A A164907 _Klaus Brockhaus_, Aug 31 2009