cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164918 The smallest starting prime which reaches prime(n) by repeated application of the map x->A060308(x).

This page as a plain text file.
%I A164918 #12 Dec 01 2017 10:29:30
%S A164918 2,2,2,2,11,2,17,11,2,29,17,11,41,2,47,29,59,17,67,71,11,41,2,47,97,
%T A164918 101,29,107,109,17,127,67,137,11,149,151,41,2,167,47,179,181,191,97,
%U A164918 197,29,107,17,227,229,233,239,241,127,67,263,269,137,11,281,283,149,307,311,41
%N A164918 The smallest starting prime which reaches prime(n) by repeated application of the map x->A060308(x).
%C A164918 a(n) is the starting value of the prime chain described in A164917 which contains (touches) prime(n).
%C A164918 By construction, each member of this sequence here is one of the values of A164368, the head elements of all chains of this map.
%H A164918 V. Shevelev, <a href="http://arXiv.org/abs/0908.2319">On critical small intervals containing primes</a>, arXiv:0908.2319 [math.NT], 2009.
%e A164918 The first four values are 2 because prime(1)=2, prime(2)=3, prime(3)=5 and prime(4)=7 are all in the prime chain starting at 2.
%p A164918 A060308 := proc(n) prevprime(2*n+1) ; end:
%p A164918 isA164368 := proc(p) local q ; q := nextprime(floor(p/2)) ; return (numtheory[pi](2*q) -numtheory[pi](p) >= 1); end proc:
%p A164918 A164368 := proc(n) option remember; local a; if n = 1 then 2; else a := nextprime( procname(n-1)) ; while not isA164368(a) do a := nextprime(a) ; end do : RETURN(a) ; end if; end proc:
%p A164918 A164918 := proc(n) local p, a, j, q, itr ; p := ithprime(n) ; a := 1000000000000000 ; for j from 1 do q := A164368(j) ; if q > p then break; end if; itr := 0 ; while q < p do q := A060308(q) ; itr := itr+1 ; end do; if q = p then return A164368(j) ; end if; end do: end proc:
%p A164918 seq(A164918(n), n=1..120) ; # _R. J. Mathar_, Mar 12 2010
%t A164918 lp[n_] := NextPrime[2n, -1];
%t A164918 a[n_] := For[pn = Prime[n]; p = 2, p <= pn, p = NextPrime[p], nwl = NestWhileList[lp, p, # <= Prime[n]&]; If[MemberQ[nwl, pn], Return[p]]];
%t A164918 Array[a, 120] (* _Jean-François Alcover_, Dec 01 2017 *)
%Y A164918 Cf. A006992, A164917, A104272, A164368, A164288.
%K A164918 nonn
%O A164918 1,1
%A A164918 _Vladimir Shevelev_, Aug 31 2009
%E A164918 Edited and extended by _R. J. Mathar_, Mar 12 2010