This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164926 #24 Aug 24 2022 09:42:42 %S A164926 2,3,107,5,347,1607,1277,21557,51867197,11,180078317,1761702947, %T A164926 8776320587,27649987598537,291598227841757,17 %N A164926 Least prime p such that x^2+x+p produces primes for x=0..n-1 and composite for x=n. %C A164926 Other known values: a(16)=17 and a(40)=41 (which is generated by Euler's polynomial, A005846). There are no other terms less than 10^12. All of Euler's Lucky numbers, A014556, are in this sequence. Assuming the prime k-tuples conjecture, Mollin's theorem 2.1 shows this sequence is defined for n>0. %C A164926 a(21)=234505015943235329417 found by J. Waldvogel and Peter Leikauf. [_Jens Kruse Andersen_, Sep 09 2009] %H A164926 R. A. Goudsmit, <a href="https://www.nature.com/articles/2141164b0.pdf">Unusual Prime Number Sequences</a>, Nature, Vol. 214 (June 10, 1967), page 1164. %H A164926 R. A. Mollin, <a href="http://www.jstor.org/stable/2975080">Prime-Producing Quadratics</a>, The American Mathematical Monthly, Vol. 104, No. 6 (Jun. - Jul., 1997), pp. 529-544. %t A164926 PrimeRun[p_Integer] := Module[{k=0}, While[PrimeQ[k^2+k+p], k++ ]; k]; nn=8; t=Table[0,{nn}]; cnt=0; p=1; While[cnt<nn, p=NextPrime[p]; n=PrimeRun[p]; If[n<=nn && t[[n]]==0, t[[n]]=p; cnt++ ]]; t %Y A164926 Cf. A005846, A014556, A067774, A210360, A210361, A210362, A210363, A210364, A210365, A211236, A211237, A211238, A211239, A211240, A354585. %K A164926 hard,nonn,more %O A164926 1,1 %A A164926 _T. D. Noe_, Sep 01 2009 %E A164926 a(14) and a(15) from _Jens Kruse Andersen_, Sep 09 2009