cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A164941 a(n) = Sum_{d|n} phi(n/d)^(d-1).

This page as a plain text file.
%I A164941 #13 Mar 13 2021 23:45:52
%S A164941 1,2,2,3,2,5,2,5,6,7,2,17,2,9,34,15,2,45,2,87,102,13,2,191,258,15,294,
%T A164941 289,2,1579,2,203,1126,19,5394,2577,2,21,4242,17227,2,16083,2,2037,
%U A164941 83282,25,2,36107,46658,262423,65794,5839,2,139161,1058578,292455
%N A164941 a(n) = Sum_{d|n} phi(n/d)^(d-1).
%H A164941 Seiichi Manyama, <a href="/A164941/b164941.txt">Table of n, a(n) for n = 1..5000</a>
%F A164941 G.f.: Sum_{k>=1} x^k/(1-phi(k)*x^k).
%F A164941 From _Seiichi Manyama_, Mar 13 2021: (Start)
%F A164941 a(n) = Sum_{k=1..n} phi(n/gcd(k, n))^(gcd(k, n) - 2).
%F A164941 If p is prime, a(p) = 2. (End)
%o A164941 (PARI) a(n) = sumdiv(n, d, eulerphi(d)^(n/d-1)); \\ _Seiichi Manyama_, Mar 13 2021
%o A164941 (PARI) a(n) = sum(k=1, n, eulerphi(n/gcd(k, n))^(gcd(k, n)-2)); \\ _Seiichi Manyama_, Mar 13 2021
%o A164941 (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, x^k/(1-eulerphi(k)*x^k))) \\ _Seiichi Manyama_, Mar 13 2021
%Y A164941 Cf. A000010, A087909, A309369.
%K A164941 nonn
%O A164941 1,2
%A A164941 _Franklin T. Adams-Watters_, Sep 01 2009