This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A164960 #14 Dec 16 2018 06:41:03 %S A164960 0,0,1,1,2,0,2,0,3,1,0,3,1,0,4,0,2,0,1,0,0,4,2,1,5,0,0,1,0,0,1,0,2,0, %T A164960 1,0,0,5,3,0,2,0,0,0,6,0,1,1,1,0,0,0,0,0,2,1,0,0,3,1,0,0,1,0,0,1,6,4, %U A164960 1,0,0,3,1,0,0,1,1,7,1 %N A164960 The minimum number of steps needed to generate prime(n) under the map x -> A060264(x) starting from any x taken from {2,3} or from A164333. %H A164960 V. Shevelev, <a href="https://arxiv.org/abs/0908.2319">On critical small intervals containing primes</a>, arXiv:0908.2319 [math.NT], 2009. %e A164960 a(3) = 1 because prime(3)=5 can be generated in 1 step starting from x=2. %e A164960 a(4) = 1 because prime(4)=7 can be generated in 1 step starting from x=3. %p A164960 # include source from A164333 and A060264 here %p A164960 A164333 := proc(n) %p A164960 if n = 1 then %p A164960 13; %p A164960 else %p A164960 for a from procname(n-1)+1 do %p A164960 if isA164333(a) then %p A164960 return a; %p A164960 end if; %p A164960 end do; %p A164960 end if; %p A164960 end proc: %p A164960 A164960aux := proc(p,strt) %p A164960 local a,x; %p A164960 if strt > p then %p A164960 return 1000000000; %p A164960 end if; %p A164960 a := 0 ; %p A164960 x := strt ; %p A164960 while x < p do %p A164960 x := A060264(x) ; %p A164960 a := a+1 ; %p A164960 end do; %p A164960 if x = p then %p A164960 return a ; %p A164960 else %p A164960 return 1000000000; %p A164960 end if; %p A164960 end proc: %p A164960 A164960 := proc(n) %p A164960 local p,a,strt,i; %p A164960 p := ithprime(n) ; %p A164960 a := A164960aux(p,2) ; %p A164960 a := min(a,A164960aux(p,3)) ; %p A164960 for i from 1 do %p A164960 strt := A164333(i) ; %p A164960 if strt > p then %p A164960 return a; %p A164960 else %p A164960 a := min(a, A164960aux(p,strt)) ; %p A164960 end if; %p A164960 end do: %p A164960 return a; %p A164960 end proc: %p A164960 seq(A164960(n),n=1..90) ; # _R. J. Mathar_, Oct 29 2011 %t A164960 nmax = 100; kmax = nmax + 5; %t A164960 A164333 = Select[Table[{(Prime[k - 1] + 1)/2, (Prime[k] - 1)/2}, {k, 3, kmax}], AllTrue[Range[#[[1]], #[[2]]], CompositeQ] &][[All, 2]]*2 + 1; %t A164960 A164960aux[p_, strt_] := Module[{a, x}, If[strt > p, Return[10^9]]; a = 0; x = strt; While[x < p, x = NextPrime[2 x]; a++]; If[x == p, Return[a], Return[10^9]]]; %t A164960 A164960[n_] := Module[{p, a, strt, i}, p = Prime[n]; a = A164960aux[p, 2]; a = Min[a, A164960aux[p, 3]]; For[i = 1, i < 100, i++, strt = A164333[[i]]; If[strt > p, Return[a], a = Min[a, A164960aux[p, strt]]]]; Return[a]]; %t A164960 Table[A164960[n], {n, 1, nmax}] (* _Jean-François Alcover_, Dec 13 2017, after _R. J. Mathar_ *) %Y A164960 Cf. A164333. %K A164960 nonn %O A164960 1,5 %A A164960 _Vladimir Shevelev_, Sep 02 2009 %E A164960 One term corrected, sequence extended, examples added by _R. J. Mathar_, Oct 29 2011