A165025 Number of cycles of n-digit numbers (including fixed points) under the base-4 Kaprekar map A165012.
1, 0, 1, 2, 1, 3, 1, 4, 3, 5, 4, 8, 5, 10, 8, 12, 10, 16, 12, 19, 16, 22, 19, 27, 22, 31, 27, 35, 31, 41, 35, 46, 41, 51, 46, 58, 51, 64, 58, 70, 64, 78, 70, 85, 78, 92, 85, 101, 92, 109, 101, 117, 109, 127, 117, 136, 127, 145, 136, 156, 145, 166, 156, 176, 166, 188, 176
Offset: 1
Links
- Joseph Myers, Table of n, a(n) for n=1..200
- H. Hanslik, E. Hetmaniok, I. Sobstyl, et al., Orbits of the Kaprekar's transformations-some introductory facts, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015.
- Index entries for the Kaprekar map
Crossrefs
Formula
Conjectures from Colin Barker, Jun 01 2017: (Start)
G.f.: x*(1 - x^2 + x^3 - 2*x^6 + 3*x^8 - x^10) / ((1 - x)^3*(1 + x)^2*(1 + x + x^2)).
a(n) = 2*a(n-2) + a(n-3) - a(n-4) - 2*a(n-5) + a(n-7) for n>7.
(End)