This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165064 #15 Jun 02 2017 00:44:46 %S A165064 1,0,1,1,2,4,1,5,2,7,3,9,4,13,7,17,8,24,11,30,16,37,21,46,27,57,34,68, %T A165064 42,83,52,96,64,113,77,132,90,153,107,175,125,200,145,226,168,256,191, %U A165064 288,217,323,247,358,278,399,312,441,348,487,387,536,429,587,475,641 %N A165064 Number of cycles of n-digit numbers (including fixed points) under the base-6 Kaprekar map A165051. %H A165064 Joseph Myers, <a href="/A165064/b165064.txt">Table of n, a(n) for n=1..100</a> %H A165064 H. Hanslik, E. Hetmaniok, I. Sobstyl, et al., <a href="http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-aeb2e2a6-99ca-4268-8f6b-a947b9c04da9">Orbits of the Kaprekar's transformations-some introductory facts</a>, Zeszyty Naukowe Politechniki Śląskiej, Seria: Matematyka Stosowana z. 5, Nr kol. 1945; 2015. %H A165064 <a href="/index/K#Kaprekar_map">Index entries for the Kaprekar map</a> %F A165064 G.f.: x*(1 + x + 2*x^5 - 2*x^7 - 3*x^8 - 3*x^9 - x^10 + 2*x^11 + 4*x^12 + 4*x^13 + 4*x^14 + x^15 - 3*x^16 - 3*x^17 - 2*x^18 - x^19 + x^21 + x^22) / ((1 - x)^4*(1 + x)^3*(1 + x^2)*(1 + x + x^2)*(1 + x + x^2 + x^3 + x^4)) (conjectured). - _Colin Barker_, Jun 01 2017 %Y A165064 Cf. A165051, A165056, A165065, A165066. %Y A165064 In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A165006 (base 3), A165025 (base 4), A165045 (base 5), A165084 (base 7), A165103 (base 8), A165123 (base 9), A164731 (base 10). %K A165064 base,nonn %O A165064 1,5 %A A165064 _Joseph Myers_, Sep 04 2009