cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165125 Number of n-digit fixed points under the base-9 Kaprekar map A165110.

Original entry on oeis.org

1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 1, 1, 2, 2, 3, 2, 2, 1, 4, 2, 3, 2, 3, 3, 4, 2, 3, 4, 4, 4, 4, 4, 4, 5, 4, 4, 5, 4, 5, 5, 5, 5, 6, 5, 6, 6, 6, 5, 7, 6, 7, 6, 6, 6, 8, 6, 7, 7, 8, 8, 8, 7, 7, 9, 8, 8
Offset: 1

Views

Author

Joseph Myers, Sep 04 2009

Keywords

Crossrefs

In other bases: A004526 (base 2, adjusted to start 1, 0, 0, 1, 1, ...), A008615 (base 3), A165027 (base 4), A008617 (base 5), A165066 (base 6), A008722 (base 7, conjecturally), A165105 (base 8), A164733 (base 10).

Formula

Conjectures from Chai Wah Wu, Apr 13 2024: (Start)
a(n) = a(n-2) - a(n-3) + a(n-5) - a(n-6) + a(n-8) + a(n-15) - a(n-17) + a(n-18) - a(n-20) + a(n-21) - a(n-23) for n > 24.
G.f.: x*(x^23 + x^22 - x^21 + x^20 + 2*x^19 - x^18 + x^17 + 3*x^16 - 2*x^15 + 3*x^13 - x^12 + 2*x^10 - x^9 + 2*x^7 - x^5 + x^4 + x^3 - x^2 + 1)/(x^23 - x^21 + x^20 - x^18 + x^17 - x^15 - x^8 + x^6 - x^5 + x^3 - x^2 + 1). (End)