cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165132 Primes whose logarithms are known to possess ternary BBP formulas.

This page as a plain text file.
%I A165132 #13 Jul 22 2025 07:20:11
%S A165132 2,3,5,7,11,13
%N A165132 Primes whose logarithms are known to possess ternary BBP formulas.
%C A165132 From _Jaume Oliver Lafont_, Oct 07 2009: (Start)
%C A165132 log(2)=(2/3)P(1,9,2,(1,0))
%C A165132 log(3)=(1/9)P(1,9,2,(9,1))
%C A165132 log(5)=(4/27)P(1,3^4,4,(9,3,1,0))
%C A165132 log(7)=(1/3^5)P(1,3^6,6,(405,81,72,9,5,0))
%C A165132 log(11)=(1/(2*3^9))P(1,3^10,10,(85293,10935,9477,1215,648,135,117,15,13,0))
%C A165132 log(13)=(1/3^5)P(1,3^6,6,(567,81,36,9,7,0))
%C A165132 See the link for the definition of P notation.
%C A165132 Equivalent expressions in reduced coefficients are given in the code section.
%C A165132 (End)
%H A165132 David H. Bailey, <a href="https://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf">A Compendium of BBP-formulas for mathematical constants</a>. See p. 24.
%o A165132 (PARI) \\ _Jaume Oliver Lafont_, Oct 07 2009
%o A165132 log2=2*suminf(k=1,[0,1][k%2+1]/k/3^k)
%o A165132 log3=suminf(k=1,[1,3][k%2+1]/k/3^k)
%o A165132 log5=4*suminf(k=1,[0,1,1,1][k%4+1]/k/3^k)
%o A165132 log7=suminf(k=1,[0,5,3,8,3,5][k%6+1]/k/3^k)
%o A165132 log11=suminf(k=1,[0,13,5,13,5,8,5,13,5,13][k%10+1]/k/3^k)/2
%o A165132 log13=suminf(k=1,[0,7,3,4,3,7][k%6+1]/k/3^k)
%Y A165132 Cf. A104885.
%K A165132 nonn,more
%O A165132 1,1
%A A165132 _Jaume Oliver Lafont_, Sep 04 2009