This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165132 #13 Jul 22 2025 07:20:11 %S A165132 2,3,5,7,11,13 %N A165132 Primes whose logarithms are known to possess ternary BBP formulas. %C A165132 From _Jaume Oliver Lafont_, Oct 07 2009: (Start) %C A165132 log(2)=(2/3)P(1,9,2,(1,0)) %C A165132 log(3)=(1/9)P(1,9,2,(9,1)) %C A165132 log(5)=(4/27)P(1,3^4,4,(9,3,1,0)) %C A165132 log(7)=(1/3^5)P(1,3^6,6,(405,81,72,9,5,0)) %C A165132 log(11)=(1/(2*3^9))P(1,3^10,10,(85293,10935,9477,1215,648,135,117,15,13,0)) %C A165132 log(13)=(1/3^5)P(1,3^6,6,(567,81,36,9,7,0)) %C A165132 See the link for the definition of P notation. %C A165132 Equivalent expressions in reduced coefficients are given in the code section. %C A165132 (End) %H A165132 David H. Bailey, <a href="https://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf">A Compendium of BBP-formulas for mathematical constants</a>. See p. 24. %o A165132 (PARI) \\ _Jaume Oliver Lafont_, Oct 07 2009 %o A165132 log2=2*suminf(k=1,[0,1][k%2+1]/k/3^k) %o A165132 log3=suminf(k=1,[1,3][k%2+1]/k/3^k) %o A165132 log5=4*suminf(k=1,[0,1,1,1][k%4+1]/k/3^k) %o A165132 log7=suminf(k=1,[0,5,3,8,3,5][k%6+1]/k/3^k) %o A165132 log11=suminf(k=1,[0,13,5,13,5,8,5,13,5,13][k%10+1]/k/3^k)/2 %o A165132 log13=suminf(k=1,[0,7,3,4,3,7][k%6+1]/k/3^k) %Y A165132 Cf. A104885. %K A165132 nonn,more %O A165132 1,1 %A A165132 _Jaume Oliver Lafont_, Sep 04 2009