This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165134 #63 Feb 16 2025 08:33:11 %S A165134 1,0,0,0,1728,6637920,165575218320,19591828170979904 %N A165134 Number of directed Hamiltonian paths in the n X n knight graph. %C A165134 Previous name was: Number of knight's paths visiting each square of an n X n chessboard exactly once. %H A165134 Stefan Behnel, <a href="http://www.behnel.de/knight.html">The Knight's Paths</a> %H A165134 A. Chernov, <a href="http://alex-black.ru/article.php?content=141">Open knight's tours</a> %H A165134 Gheorghe Coserea, <a href="/A165134/a165134.txt">Solutions for 5x5 chessboard</a> %H A165134 P. Hingston, G. Kendall, <a href="http://dx.doi.org/10.1109/CEC.2005.1554800">Enumerating knight's tours using an ant colony algorithm</a>, The 2005 IEEE Congress on Evolutionary Computation, 2 (2006), 1003-1010 %H A165134 G. Stertenbrink, <a href="http://magictour.free.fr/enum">Number of Knight's Tours</a> %H A165134 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a> %H A165134 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KnightGraph.html">Knight Graph</a> %e A165134 From _Gheorghe Coserea_, Oct 08 2016: (Start) %e A165134 For n=5 the numbers in the table below give the number of knight's paths starting at the respective position on the 5 X 5 chessboard. In total there are a(5) = 304*4 + 56*8 + 64 = 1728 solutions. %e A165134 [1] [2] [3] [4] [5] %e A165134 [1] 304 0 56 0 304 %e A165134 [2] 0 56 0 56 0 %e A165134 [3] 56 0 64 0 56 %e A165134 [4] 0 56 0 56 0 %e A165134 [5] 304 0 56 0 304 %e A165134 (End) %Y A165134 Cf. Undirected Hamiltonian paths: A169696 (3 X n), A079137 (4 X n), A083386 (5 X n), A306281 (6 X n), A306283 (7 X n), A308131 (n X n). %Y A165134 Cf. A001230, A118067, A306282. %K A165134 nonn,hard,more %O A165134 1,5 %A A165134 [No name given] (c.candide(AT)free.fr), Sep 04 2009 %E A165134 a(7) from Guenter Stertenbrink, added by _Alex Chernov_, Sep 01 2013 %E A165134 a(1)=1, a(2)=0 prepended by _Max Alekseyev_, Sep 22 2013 %E A165134 a(8) from _Alex Chernov_, May 10 2014 %E A165134 Name made more precise by _Eric W. Weisstein_, Apr 14 2019