This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165161 #8 Feb 25 2019 08:21:56 %S A165161 1,2,5,29,31,43,41,29,31,71,61,2039,3421,13,-1,-3107,4127,44665, %T A165161 -43069,-174281,174941,854651,-854375,-236361361,236366821,8553109, %U A165161 -8553097,-23749460159,23749461899,8615841290327 %N A165161 Numerator of the n-th term in the first differences of the binomial transform of the "original" Bernoulli numbers. %C A165161 The binomial transform of the "original" Bernoulli numbers is 1, 3/2, 13/6, ... as mentioned in A164558. %C A165161 The first differences of that sequence are 3/2 - 1 = 1/2, 13/6 - 3/2 = 2/3, 5/6, 29/30, 31/30, ... and the numerators of these differences are listed here. %C A165161 The bisection a(2n) reappears (up to signs) as A162173(n+1). %F A165161 a(2n) + A000367(n) = A006954(n+1) = A051717(2n+1). %F A165161 a(2n+1) + a(2n+2) = A051717(2n+2) + A051717(2n+3), n > 0. %p A165161 read("transforms") : %p A165161 A164555 := proc(n) if n <= 2 then 1; else numer(bernoulli(n)) ; end if; end proc: %p A165161 A027642 := proc(n) denom(bernoulli(n)) ; end proc: %p A165161 nmax := 40: %p A165161 BINOMIAL([seq(A164555(n)/A027642(n), n=0..nmax)]) : %p A165161 map(numer,DIFF(%)) ; # _R. J. Mathar_, Jul 07 2011 %Y A165161 Cf. A051717 (denominators), A164555, A027642. %K A165161 frac,sign %O A165161 0,2 %A A165161 _Paul Curtz_, Sep 06 2009