cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165186 a(n) = Sum_{k=1..n} (k*(n-k) mod n).

Original entry on oeis.org

0, 1, 4, 6, 10, 17, 28, 36, 30, 45, 66, 82, 78, 105, 140, 136, 136, 141, 190, 230, 238, 253, 322, 380, 250, 325, 360, 434, 406, 505, 558, 592, 572, 561, 700, 678, 666, 741, 910, 980, 820, 917, 946, 1122, 1050, 1173, 1316, 1432, 1078, 1125, 1394, 1430, 1378, 1449
Offset: 1

Views

Author

Wouter Meeussen, Sep 06 2009

Keywords

Comments

Comment from Max Alekseyev, Nov 22 2009: For a prime p==3 (mod 4), a(p) = p*h(-p) + p*(p-1)/2 where h(-p) is the class number (listed in A002143). For example, h(-19)=1 and a(19) = 19*1 + 19*18/2 = 190.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Mod[k (n-k),n],{k,n}],{n,100}]