This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A165187 #17 Feb 13 2023 08:59:19 %S A165187 1,24,180,800,2625,7056,16464,34560,66825,121000,207636,340704,538265, %T A165187 823200,1224000,1775616,2520369,3508920,4801300,6468000,8591121, %U A165187 11265584,14600400,18720000,23765625,29896776,37292724,46154080,56704425,69192000,83891456,101105664 %N A165187 a(n) = n^3*(n+1)^2*(n+2)/12. %C A165187 a(n) is row 30 of Table A128629 and can be generated by multiplying rows %C A165187 two, three and five (or any other combination of rows with a row number product of 30). %H A165187 <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (7,-21,35,-35,21,-7,1). %F A165187 a(n) = A000027(n)*A000217(n)*A000292(n) = A128629(30,n). %F A165187 a(n) = 7*a(n-1)-21*a(n-2)+35*a(n-3)-35*a(n-4)+21*a(n-5)-7*a(n-6)+a(n-7). %F A165187 G.f.: -x*(1+17*x+33*x^2+9*x^3)/(x-1)^7. %F A165187 From _Amiram Eldar_, Feb 13 2023: (Start) %F A165187 Sum_{n>=1} 1/a(n) = 153/4 - 9*Pi^2/2 + 6*zeta(3). %F A165187 Sum_{n>=1} (-1)^(n+1)/a(n) = 48*log(2) - 141/4 - Pi^2/4 + 9*zeta(3)/2. (End) %e A165187 1,2,3,4,5, ... (A000027) times 1,3,6,10,15, ... (A000217) times 1,4,10,20,35, ... (A000292) yields 1,24,180,800, ... %t A165187 a[n_] := n^3*(n+1)^2*(n+2)/12; Array[a, 35] (* _Amiram Eldar_, Feb 13 2023 *) %Y A165187 Cf. A000027, A000217, A000292, A128629. %K A165187 nonn,easy %O A165187 1,2 %A A165187 _Alford Arnold_, Sep 06 2009 %E A165187 Edited and extended by _R. J. Mathar_, Sep 09 2009