cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A165189 Partial sums of partial sums of (A001840 interleaved with zeros).

This page as a plain text file.
%I A165189 #14 Jun 16 2018 12:35:46
%S A165189 1,2,5,8,14,20,31,42,60,78,105,132,171,210,264,318,390,462,556,650,
%T A165189 770,890,1040,1190,1375,1560,1785,2010,2280,2550,2871,3192,3570,3948,
%U A165189 4389,4830,5341,5852,6440,7028,7700,8372,9136,9900,10764,11628,12600,13572
%N A165189 Partial sums of partial sums of (A001840 interleaved with zeros).
%C A165189 Also convolution of period six sequence 1,0,0,0,0,0,1,... (A079979) with sequence 1,2,5,8,14,20,30,40,... (A006918 without initial zero).
%H A165189 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (2, 1, -4, 1, 2, 0, -2, -1, 4, -1, -2, 1).
%F A165189 G.f.: x/((1-x)^5*(1+x)^3*(1-x+x^2)*(1+x+x^2)).
%F A165189 54*a(n) = 631/64 +405/16*n +3/32*n^4 +15/8*n^3 +381/32*n^2 -(-1)^n*( 9/32*n^2 +45/16*n +375/64) -A131713(n) -3*A057079(n). - _R. J. Mathar_, Jun 16 2018
%e A165189 A001840 interleaved with zeros is
%e A165189 1, 0, 2, 0, 3, 0, 5, 0, 7, 0, 9, 0, 12, 0, 15, 0, ...
%e A165189 Partial sums thereof are
%e A165189 1, 1, 3, 3, 6, 6, 11, 11, 18, 18, 27, 27, 39, 39, 54, 54, ...
%e A165189 This equals A014125 interleaved with itself.
%e A165189 Partial sums thereof are
%e A165189 1, 2, 5, 8, 14, 20, 31, 42, 60, 78, 105, 132, 171, 210, 264, 318, ...
%t A165189 Drop[Accumulate[Accumulate[Riffle[LinearRecurrence[{2,-1,1,-2,1},{0,1,2,3,5},30],0]]],2] (* or *) LinearRecurrence[{2,1,-4,1,2,0,-2,-1,4,-1,-2,1},{1,2,5,8,14,20,31,42,60,78,105,132},50] (* _Harvey P. Dale_, Jun 08 2018 *)
%o A165189 (PARI) /* first computes u = A001840 interleaved with zeros, then v = partial sums, then w = second partial sums */ {m=50; u=vector(m, n, polcoeff(x/((1-x^2)^3*(1+x^2+x^4))+x*O(x^(n)),n)); v=vector(m); a=u[1]; v[1]=a; for(n=2, m, a+=u[n]; v[n]=a); w=vector(m-1); a=v[1]; w[1]=a; for(n=2, m-1, a+=v[n]; w[n]=a); w} \\ _Klaus Brockhaus_, Sep 21 2009
%Y A165189 Cf. A001840 (expansion of x/((1-x)^3*(1+x+x^2))), A001840 (expansion of x/((1-x)^2*(1-x^3))), A079979, A006918, A014125.
%K A165189 nonn
%O A165189 1,2
%A A165189 _Alford Arnold_, Sep 16 2009
%E A165189 Edited and corrected by _R. J. Mathar_, _Klaus Brockhaus_ and _N. J. A. Sloane_, Sep 21 2009 - Sep 25 2009